1
|
Freitas MAMD, Cunha-Ferreira IC, Leal CV, Fernandez JCC, Omachi CY, Campos LS, Masi BP, Krüger RH, Hajdu E, Thompson CC, Thompson FL. Microbiome diversity from sponges biogeographically distributed between South America and Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163256. [PMID: 37011689 DOI: 10.1016/j.scitotenv.2023.163256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Sponges from South America and Antarctica are evolutionarily closely related. Specific symbiont signatures that could differentiate these two geographic regions are unknown. This study aimed to investigate the microbiome diversity of sponges from South America and Antarctica. In total 71 sponge specimens were analyzed (Antarctica: N = 59, 13 different species; South America: N = 12, 6 different species). Illumina 16S rRNA sequences were generated (2.88 million sequences; 40K ± 29K/sample). The most abundant symbionts were heterotrophic (94.8 %) and belonged mainly to Proteobacteria and Bacteroidota. EC94 was the most abundant symbiont and dominated the microbiome of some species (70-87 %), comprising at least 10 phylogroups. Each of the EC94 phylogroups was specific to one genus or species of sponge. Furthermore, South America sponges had higher abundance of photosynthetic microorganisms (2.3 %) and sponges from Antarctica, the highest abundance of chemosynthetic (5.5 %). Sponge symbionts may contribute to the function of their hosts. The unique features from each of these two regions (e.g., light, temperature, and nutrients) possibly stimulate distinct microbiome diversity from sponges biogeographically distributed across continents.
Collapse
Affiliation(s)
- Mayanne A M de Freitas
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Camille V Leal
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio C C Fernandez
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia Y Omachi
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lucia S Campos
- Department of Zoology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno P Masi
- Laboratory of Marine Ecology and Fishery Oceanography of the Amazon (LEMOPA), Socio environmental and Water Resources Institute (ISARH), Federal Rural University of the Amazon (UFRA), Belém, PA, Brazil
| | - Ricardo H Krüger
- Laboratory of Enzymology, Biology Institute, University of Brasília (UNB), Brasília, Brazil
| | - Eduardo Hajdu
- Laboratory of Environmental Indicators, Oceanographic Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Biology Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Keegstra JM, Carrara F, Stocker R. The ecological roles of bacterial chemotaxis. Nat Rev Microbiol 2022; 20:491-504. [PMID: 35292761 DOI: 10.1038/s41579-022-00709-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
How bacterial chemotaxis is performed is much better understood than why. Traditionally, chemotaxis has been understood as a foraging strategy by which bacteria enhance their uptake of nutrients and energy, yet it has remained puzzling why certain less nutritious compounds are strong chemoattractants and vice versa. Recently, we have gained increased understanding of alternative ecological roles of chemotaxis, such as navigational guidance in colony expansion, localization of hosts or symbiotic partners and contribution to microbial diversity by the generation of spatial segregation in bacterial communities. Although bacterial chemotaxis has been observed in a wide range of environmental settings, insights into the phenomenon are mostly based on laboratory studies of model organisms. In this Review, we highlight how observing individual and collective migratory behaviour of bacteria in different settings informs the quantification of trade-offs, including between chemotaxis and growth. We argue that systematically mapping when and where bacteria are motile, in particular by transgenerational bacterial tracking in dynamic environments and in situ approaches from guts to oceans, will open the door to understanding the rich interplay between metabolism and growth and the contribution of chemotaxis to microbial life.
Collapse
Affiliation(s)
| | - Francesco Carrara
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Institute for Environmental Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Berlanga M, Palau M, Guerrero R. Community homeostasis of coastal microbial mats from the Camargue during winter (cold) and summer (hot) seasons. Ecosphere 2022. [DOI: 10.1002/ecs2.3922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mercedes Berlanga
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
| | - Montserrat Palau
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences University of Barcelona Barcelona Spain
| | - Ricardo Guerrero
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine University of Barcelona Barcelona Spain
| |
Collapse
|
4
|
Sabotič J, Brzin J, Erjavec J, Dreo T, Tušek Žnidarič M, Ravnikar M, Kos J. L-Amino Acid Oxidases From Mushrooms Show Antibacterial Activity Against the Phytopathogen Ralstonia solanacearum. Front Microbiol 2020; 11:977. [PMID: 32508788 PMCID: PMC7248570 DOI: 10.3389/fmicb.2020.00977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Ralstonia solanaceraum is the quarantine plant pathogenic bacterium that causes bacterial wilt in over 200 host plants, which include economically important crops such as potato, tomato, tobacco, banana, and ginger. Alternative biological methods of disease control that can be used in integrated pest management are extensively studied. In search of new proteins with antibacterial activity against R. solanacearum, we identified L-amino acid oxidases (LAOs) from fruiting bodies of Amanita phalloides (ApLAO) and Infundibulicybe geotropa (CgLAO). We describe an optimized isolation procedure for their biochemical characterization, and show that they are dimeric proteins with estimated monomer molecular masses of 72 and 66 kDa, respectively, with isoelectric point of pH 6.5. They have broad substrate specificities for hydrophobic and charged amino acids, with highest Km for L-Leu, and broad pH optima at pH 5 and pH 6, respectively. An enzyme with similar properties is also characterized from the mycelia of I. geotropa (CgmycLAO). Fractionated aqueous extracts of 15 species of mushrooms show that LAO activity against L-Leu correlates with antibacterial activity. We confirm that the LAO activities mediate the antibacterial actions of ApLAO, CgLAO, and CgmycLAO. Their antibacterial activities are greater against Gram-negative versus Gram-positive bacteria, with inhibition of growth rate, prolongation of lag-phase, and decreased endpoint biomass. In Gram-positive bacteria, they mainly prolong the lag phase. These in vitro antibacterial activities of CgLAO and CgmycLAO are confirmed in vivo in tomato plants, while ApLAO has no effect on disease progression in planta. Transmission electron microscopy shows morphological changes of R. solanacearum upon LAO treatments. Finally, broad specificity of the antibacterial activities of these purified LAOs were seen for in vitro screening against 14 phytopathogenic bacteria. Therefore, these fungal LAOs show great potential as new biological phytoprotective agents and show the fruiting bodies of higher fungi to be a valuable source of antimicrobials with unique features.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jože Brzin
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Jana Erjavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tanja Dreo
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
St. James AR, Richardson RE. Ecogenomics reveals community interactions in a long-term methanogenic bioreactor and a rapid switch to sulfate-reducing conditions. FEMS Microbiol Ecol 2020; 96:5809959. [DOI: 10.1093/femsec/fiaa050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/17/2020] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT
The anaerobic digestion of wastes is globally important in the production of methane (CH4) as a biofuel. When sulfate is present, sulfate-reducing bacteria (SRB) are stimulated, competing with methanogens for common substrates, which decreases CH4 production and results in the formation of corrosive, odorous hydrogen sulfide gas (H2S). Here, we show that a population of SRB within a methanogenic bioreactor fed only butyrate for years immediately (within hours) responded to sulfate availability and shifted the microbial community dynamics within the bioreactor. By mapping shotgun metatranscriptomes to metagenome-assembled genomes, we shed light on the transcriptomic responses of key community members in response to increased sulfate provision. We link these short-term transcriptional responses to long-term niche partitioning using comparative metagenomic analyses. Our results suggest that sulfate provision supports a syntrophic butyrate oxidation community that disfavors poly-β-hydroxyalkanoate storage and that hydrogenotrophic SRB populations effectively exclude obligately hydrogenotrophic, but not aceticlastic, methanogens when sulfate is readily available. These findings elucidate key ecological dynamics between SRB, methanogens and syntrophic butyrate-oxidizing bacteria, which can be applied to a variety of engineered and natural systems.
Collapse
Affiliation(s)
- Andrew R St. James
- School of Civil and Environmental Engineering, Cornell University, 527 College Ave, Hollister Hall, Ithaca, NY, USA 14853
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, 527 College Ave, Hollister Hall, Ithaca, NY, USA 14853
| |
Collapse
|
6
|
Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol 2016; 43:294-312. [DOI: 10.1080/1040841x.2016.1206060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ganesan Saibaba
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, India
| |
Collapse
|
7
|
Aerobic Toluene Degraders in the Rhizosphere of a Constructed Wetland Model Show Diurnal Polyhydroxyalkanoate Metabolism. Appl Environ Microbiol 2016; 82:4126-4132. [PMID: 27129963 DOI: 10.1128/aem.00493-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Constructed wetlands (CWs) are successfully applied for the treatment of waters contaminated with aromatic compounds. In these systems, plants provide oxygen and root exudates to the rhizosphere and thereby stimulate microbial degradation processes. Root exudation of oxygen and organic compounds depends on photosynthetic activity and thus may show day-night fluctuations. While diurnal changes in CW effluent composition have been observed, information on respective fluctuations of bacterial activity are scarce. We investigated microbial processes in a CW model system treating toluene-contaminated water which showed diurnal oscillations of oxygen concentrations using metaproteomics. Quantitative real-time PCR was applied to assess diurnal expression patterns of genes involved in aerobic and anaerobic toluene degradation. We observed stable aerobic toluene turnover by Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis was upregulated in these bacteria during the day, suggesting that they additionally feed on organic root exudates while reutilizing the stored carbon compounds during the night via the glyoxylate cycle. Although mRNA copies encoding the anaerobic enzyme benzylsuccinate synthase (bssA) were relatively abundant and increased slightly at night, the corresponding protein could not be detected in the CW model system. Our study provides insights into diurnal patterns of microbial processes occurring in the rhizosphere of an aquatic ecosystem. IMPORTANCE Constructed wetlands are a well-established and cost-efficient option for the bioremediation of contaminated waters. While it is commonly accepted knowledge that the function of CWs is determined by the interplay of plants and microorganisms, the detailed molecular processes are considered a black box. Here, we used a well-characterized CW model system treating toluene-contaminated water to investigate the microbial processes influenced by diurnal plant root exudation. Our results indicated stable aerobic toluene degradation by members of the Burkholderiales during the day and night. Polyhydroxyalkanoate synthesis in these bacteria was higher during the day, suggesting that they additionally fed on organic root exudates and reutilized the stored carbon compounds during the night. Our study illuminates microbial processes occurring in the rhizosphere of an aquatic ecosystem.
Collapse
|
8
|
Lünsmann V, Kappelmeyer U, Benndorf R, Martinez-Lavanchy PM, Taubert A, Adrian L, Duarte M, Pieper DH, von Bergen M, Müller JA, Heipieper HJ, Jehmlich N. In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environ Microbiol 2016; 18:1176-86. [PMID: 26616584 DOI: 10.1111/1462-2920.13133] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 12/14/2022]
Abstract
In constructed wetlands, organic pollutants are mainly degraded via microbial processes. Helophytes, plants that are commonly used in these systems, provide oxygen and root exudates to the rhizosphere, stimulating microbial degradation. While the treatment performance of constructed wetlands can be remarkable, a mechanistic understanding of microbial degradation processes in the rhizosphere is still limited. We investigated microbial toluene removal in a constructed wetland model system combining 16S rRNA gene sequencing, metaproteomics and (13) C-toluene in situ protein-based stable isotope probing (protein-SIP). The rhizospheric bacterial community was dominated by Burkholderiales and Rhizobiales, each contributing about 20% to total taxon abundance. Protein-SIP data revealed that the members of Burkholderiaceae, the proteins of which showed about 73% of (13) C-incorporation, were the main degraders of toluene in the planted system, while the members of Comamonadaceae were involved to a lesser extent in degradation (about 64% (13) C-incorporation). Among the Burkholderiaceae, one of the key players of toluene degradation could be assigned to Ralstonia pickettii. We observed that the main pathway of toluene degradation occurred via two subsequent monooxygenations of the aromatic ring. Our study provides a suitable approach to assess the key processes and microbes that are involved in the degradation of organic pollutants in complex rhizospheric ecosystems.
Collapse
Affiliation(s)
- Vanessa Lünsmann
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Uwe Kappelmeyer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - René Benndorf
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Paula M Martinez-Lavanchy
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Anja Taubert
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Marcia Duarte
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research - HZI, Braunschweig, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Metabolomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Department of Biotechnology, Chemistry and Environmental Engineering, University of Aalborg, Aalborg, Denmark
| | - Jochen A Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
9
|
Prieto A, Escapa IF, Martínez V, Dinjaski N, Herencias C, de la Peña F, Tarazona N, Revelles O. A holistic view of polyhydroxyalkanoate metabolism inPseudomonas putida. Environ Microbiol 2015; 18:341-57. [DOI: 10.1111/1462-2920.12760] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/12/2014] [Accepted: 12/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Auxiliadora Prieto
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Isabel F. Escapa
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Virginia Martínez
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Nina Dinjaski
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Cristina Herencias
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Fernando de la Peña
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Natalia Tarazona
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Olga Revelles
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| |
Collapse
|
10
|
Mujahid M, Prasuna ML, Sasikala C, Ramana CV. Integrated Metabolomic and Proteomic Analysis Reveals Systemic Responses of Rubrivivax benzoatilyticus JA2 to Aniline Stress. J Proteome Res 2014; 14:711-27. [DOI: 10.1021/pr500725b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md Mujahid
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - M Lakshmi Prasuna
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Ch Sasikala
- Bacterial
Discovery Laboratory, Center for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Ch Venkata Ramana
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
11
|
Goh LK, Purama RK, Sudesh K. Enhancement of Stress Tolerance in the Polyhydroxyalkanoate Producers without Mobilization of the Accumulated Granules. Appl Biochem Biotechnol 2013; 172:1585-98. [DOI: 10.1007/s12010-013-0634-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
12
|
Shen X, Hu H, Peng H, Wang W, Zhang X. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 2013; 14:271. [PMID: 23607266 PMCID: PMC3644233 DOI: 10.1186/1471-2164-14-271] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 04/16/2013] [Indexed: 12/21/2022] Open
Abstract
Background Some Pseudomonas strains function as predominant plant growth-promoting rhizobacteria (PGPR). Within this group, Pseudomonas chlororaphis and Pseudomonas fluorescens are non-pathogenic biocontrol agents, and some Pseudomonas aeruginosa and Pseudomonas stutzeri strains are PGPR. P. chlororaphis GP72 is a plant growth-promoting rhizobacterium with a fully sequenced genome. We conducted a genomic analysis comparing GP72 with three other pseudomonad PGPR: P. fluorescens Pf-5, P. aeruginosa M18, and the nitrogen-fixing strain P. stutzeri A1501. Our aim was to identify the similarities and differences among these strains using a comparative genomic approach to clarify the mechanisms of plant growth-promoting activity. Results The genome sizes of GP72, Pf-5, M18, and A1501 ranged from 4.6 to 7.1 M, and the number of protein-coding genes varied among the four species. Clusters of Orthologous Groups (COGs) analysis assigned functions to predicted proteins. The COGs distributions were similar among the four species. However, the percentage of genes encoding transposases and their inactivated derivatives (COG L) was 1.33% of the total genes with COGs classifications in A1501, 0.21% in GP72, 0.02% in Pf-5, and 0.11% in M18. A phylogenetic analysis indicated that GP72 and Pf-5 were the most closely related strains, consistent with the genome alignment results. Comparisons of predicted coding sequences (CDSs) between GP72 and Pf-5 revealed 3544 conserved genes. There were fewer conserved genes when GP72 CDSs were compared with those of A1501 and M18. Comparisons among the four Pseudomonas species revealed 603 conserved genes in GP72, illustrating common plant growth-promoting traits shared among these PGPR. Conserved genes were related to catabolism, transport of plant-derived compounds, stress resistance, and rhizosphere colonization. Some strain-specific CDSs were related to different kinds of biocontrol activities or plant growth promotion. The GP72 genome contained the cus operon (related to heavy metal resistance) and a gene cluster involved in type IV pilus biosynthesis, which confers adhesion ability. Conclusions Comparative genomic analysis of four representative PGPR revealed some conserved regions, indicating common characteristics (metabolism of plant-derived compounds, heavy metal resistance, and rhizosphere colonization) among these pseudomonad PGPR. Genomic regions specific to each strain provide clues to its lifestyle, ecological adaptation, and physiological role in the rhizosphere.
Collapse
Affiliation(s)
- Xuemei Shen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Martínez V, Jurkevitch E, García JL, Prieto MA. Reward forBdellovibrio bacteriovorusfor preying on a polyhydroxyalkanoate producer. Environ Microbiol 2012; 15:1204-15. [DOI: 10.1111/1462-2920.12047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/29/2012] [Accepted: 11/03/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Virginia Martínez
- Environmental Biology Department; Centro de Investigaciones Biológicas; CSIC, C/ Ramiro de Maeztu, 9; 28040; Madrid; Spain
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology; Faculty of Agricultural, Food and Environmental Quality Sciences; the Hebrew University of Jerusalem; Rehovot; 76100; Israel
| | - José Luis García
- Environmental Biology Department; Centro de Investigaciones Biológicas; CSIC, C/ Ramiro de Maeztu, 9; 28040; Madrid; Spain
| | - María Auxiliadora Prieto
- Environmental Biology Department; Centro de Investigaciones Biológicas; CSIC, C/ Ramiro de Maeztu, 9; 28040; Madrid; Spain
| |
Collapse
|
14
|
Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol 2012; 78:6017-26. [PMID: 22706067 DOI: 10.1128/aem.01099-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate predator Bdellovibrio bacteriovorus HD100 shows a large set of proteases and other hydrolases as part of its hydrolytic arsenal needed for its predatory life cycle. We present genetic and biochemical evidence that open reading frame (ORF) Bd3709 of B. bacteriovorus HD100 encodes a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase (PhaZ(Bd)). The primary structure of PhaZ(Bd) suggests that this enzyme belongs to the α/β-hydrolase fold family and has a typical serine hydrolase catalytic triad (serine-histidine-aspartic acid) in agreement with other PHA depolymerases and lipases. PhaZ(Bd) has been extracellularly produced using different hypersecretor Tol-pal mutants of Escherichia coli and Pseudomonas putida as recombinant hosts. The recombinant PhaZ(Bd) has been characterized, and its biochemical properties have been compared to those of other PHA depolymerases. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. It is also affected by the reducing agent dithiothreitol and nonionic detergents like Tween 80. PhaZ(Bd) is an endoexohydrolase that cleaves both large and small PHA molecules, producing mainly dimers but also monomers and trimers. The enzyme specifically degrades mcl-PHA and is inactive toward short-chain-length polyhydroxyalkanoates (scl-PHA) like polyhydroxybutyrate (PHB). These studies shed light on the potentiality of these predators as sources of new biocatalysts, such as an mcl-PHA depolymerase, for the production of enantiopure hydroxyalkanoic acids and oligomers as building blocks for the synthesis of biobased polymers.
Collapse
|
15
|
Fones H, Preston GM. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol Lett 2011; 327:1-8. [PMID: 22092667 DOI: 10.1111/j.1574-6968.2011.02449.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/22/2011] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) are a key feature of plant (and animal) defences against invading pathogens. As a result, plant pathogens must be able to either prevent their production or tolerate high concentrations of these highly reactive chemicals. In this review, we focus on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS. We also explore the ways in which pseudomonads may exploit plant ROS generation for their own purposes and even produce ROS directly as part of their infection mechanisms.
Collapse
Affiliation(s)
- Helen Fones
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
16
|
Fibach-Paldi S, Burdman S, Okon Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. FEMS Microbiol Lett 2011; 326:99-108. [DOI: 10.1111/j.1574-6968.2011.02407.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 08/30/2011] [Accepted: 09/03/2011] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sharon Fibach-Paldi
- Department of Plant Pathology and Microbiology and The Otto Warburg Minerva Center for Agricultural Biotechnology; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot; Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and The Otto Warburg Minerva Center for Agricultural Biotechnology; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot; Israel
| | - Yaacov Okon
- Department of Plant Pathology and Microbiology and The Otto Warburg Minerva Center for Agricultural Biotechnology; The Robert H. Smith Faculty of Agriculture, Food and Environment; The Hebrew University of Jerusalem; Rehovot; Israel
| |
Collapse
|
17
|
Schallmey M, Ly A, Wang C, Meglei G, Voget S, Streit WR, Driscoll BT, Charles TC. Harvesting of novel polyhydroxyalkanaote (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening. FEMS Microbiol Lett 2011; 321:150-6. [DOI: 10.1111/j.1574-6968.2011.02324.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
|
19
|
Chen GQ. Plastics Completely Synthesized by Bacteria: Polyhydroxyalkanoates. MICROBIOLOGY MONOGRAPHS 2010. [DOI: 10.1007/978-3-642-03287-5_2] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|