1
|
Mamada M, Hayakawa M, Ochi J, Hatakeyama T. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects. Chem Soc Rev 2024; 53:1624-1692. [PMID: 38168795 DOI: 10.1039/d3cs00837a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Boron-based multiple-resonance (MR) emitters exhibit the advantages of narrowband emission, high absolute photoluminescence quantum yield, thermally activated delayed fluorescence (TADF), and sufficient stability during the operation of organic light-emitting diodes (OLEDs). Thus, such MR emitters have been widely applied as blue emitters in triplet-triplet-annihilation-driven fluorescent devices used in smartphones and televisions. Moreover, they hold great promise as TADF or terminal emitters in TADF-assisted fluorescence or phosphor-sensitised fluorescent OLEDs. Herein we comprehensively review organoboron-based MR emitters based on their synthetic strategies, clarify structure-photophysical property correlations, and provide design guidelines and future development prospects.
Collapse
Affiliation(s)
- Masashi Mamada
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Junki Ochi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
2
|
Tanaka H, Oda S, Ricci G, Gotoh H, Tabata K, Kawasumi R, Beljonne D, Olivier Y, Hatakeyama T. Hypsochromic Shift of Multiple-Resonance-Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew Chem Int Ed Engl 2021; 60:17910-17914. [PMID: 34038618 DOI: 10.1002/anie.202105032] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
Herein, we reported an ultrapure blue multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) material (ν-DABNA-O-Me) with a high photoluminescence quantum yield and a large rate constant for reverse intersystem crossing. Because of restricted π-conjugation of the HOMO rather than the LUMO induced by oxygen atom incorporation, ν-DABNA-O-Me shows a hypsochromic shift compared to the parent MR-TADF material (ν-DABNA). An organic light-emitting diode based on this material exhibits an emission at 465 nm, with a small full-width at half-maximum of 23 nm and Commission Internationale de l'Eclairage coordinates of (0.13, 0.10), and a high maximum external quantum efficiency of 29.5 %. Moreover, ν-DABNA-O-Me facilitates a drastically improved efficiency roll-off and a device lifetime compared to ν-DABNA, which demonstrates significant potential of the oxygen atom incorporation strategy.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Susumu Oda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Gaetano Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000, Namur, Belgium
| | - Hajime Gotoh
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Keita Tabata
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Ryosuke Kawasumi
- JNC Petrochemical Corporation, 5-1 Goi Kaigan, Ichihara, Chiba, 290-8551, Japan
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000, Namur, Belgium
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
3
|
Tanaka H, Oda S, Ricci G, Gotoh H, Tabata K, Kawasumi R, Beljonne D, Olivier Y, Hatakeyama T. Hypsochromic Shift of Multiple‐Resonance‐Induced Thermally Activated Delayed Fluorescence by Oxygen Atom Incorporation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hiroyuki Tanaka
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - Susumu Oda
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Gaetano Ricci
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide Namur Institute of Structured Matter Université de Namur Rue de Bruxelles, 61 5000 Namur Belgium
| | - Hajime Gotoh
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Keita Tabata
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - Ryosuke Kawasumi
- JNC Petrochemical Corporation 5-1 Goi Kaigan Ichihara Chiba 290-8551 Japan
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials Université de Mons Place du Parc 20 7000 Mons Belgium
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solide Namur Institute of Structured Matter Université de Namur Rue de Bruxelles, 61 5000 Namur Belgium
| | - Takuji Hatakeyama
- Department of Chemistry School of Science and Technology Kwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| |
Collapse
|
4
|
Shizu K, Adachi C, Kaji H. Visual Understanding of Vibronic Coupling and Quantitative Rate Expression for Singlet Fission in Molecular Aggregates. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
- Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
5
|
Nagami T, Tonami T, Okada K, Yoshida W, Miyamoto H, Nakano M. Vibronic coupling density analysis and quantum dynamics simulation for singlet fission in pentacene and its halogenated derivatives. J Chem Phys 2020; 153:134302. [DOI: 10.1063/5.0024746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Takanori Nagami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takayoshi Tonami
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kenji Okada
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wataru Yoshida
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hajime Miyamoto
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayoshi Nakano
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Center for Spintronics Research Network (CSRN), Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Quantum Information and Quantum Biology Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
6
|
Ikeda N, Oda S, Matsumoto R, Yoshioka M, Fukushima D, Yoshiura K, Yasuda N, Hatakeyama T. Solution-Processable Pure Green Thermally Activated Delayed Fluorescence Emitter Based on the Multiple Resonance Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004072. [PMID: 32864797 DOI: 10.1002/adma.202004072] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/19/2020] [Indexed: 05/28/2023]
Abstract
Thermally activated delayed fluorescence (TADF) materials based on the multiple resonance (MR) effect are applied in organic light-emitting diodes (OLEDs), combining high color purity and efficiency. However, they are not fabricated via solution-processing, which is an economical approach toward the mass production of OLED displays. Here, a solution-processable MR-TADF material (OAB-ABP-1), with an extended π-skeleton and bulky substituents, is designed. OAB-ABP-1 is synthesized from commercially available starting materials via a four-step process involving one-shot double borylation. OAB-ABP-1 presents attractive photophysical properties, a narrow emission band, a high photoluminescence quantum yield, a small energy gap between S1 and T1 , and low activation energy for reverse intersystem crossing. These properties are attributed to the alternating localization of the highest occupied and lowest unoccupied molecular orbitals induced by the boron, nitrogen, and oxygen atoms. Furthermore, to facilitate charge recombination, two novel semiconducting polymers with similar ionization potentials to that of OAB-ABP-1 are synthesized for use as interlayer and emissive layer materials. A solution-processed OLED device is fabricated using OAB-ABP-1 and the aforementioned polymers; it exhibits pure green electroluminescence with a small full-width at half-maximum and a high external quantum efficiency with minimum efficiency roll-off.
Collapse
Affiliation(s)
- Naoya Ikeda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Susumu Oda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Ryuji Matsumoto
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki, 300-3294, Japan
| | - Mayu Yoshioka
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki, 300-3294, Japan
| | - Daisuke Fukushima
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki, 300-3294, Japan
| | - Kazuki Yoshiura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Nobuhiro Yasuda
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| |
Collapse
|
7
|
OTA W, TERAMURA K, HOSOKAWA S, TANAKA T, SATO T. Regioselectivity of H<sub>2</sub> Adsorption on Ga<sub>2</sub>O<sub>3</sub> Surface Based on Vibronic Coupling Density Analysis. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2018. [DOI: 10.2477/jccj.2018-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wataru OTA
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Kentaro TERAMURA
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Saburo HOSOKAWA
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Tsunehiro TANAKA
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8510, Japan
| | - Tohru SATO
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
- Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Haruta N, Sato T, Tanaka K, Baron M. Reaction mechanism in the mechanochemical synthesis of dibenzophenazine: application of vibronic coupling density analysis. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Sato T, Uejima M, Iwahara N, Haruta N, Shizu K, Tanaka K. Vibronic coupling density and related concepts. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/428/1/012010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Iwahara N, Sato T, Tanaka K. Effect of Coulomb interactions on the vibronic couplings in C60−. J Chem Phys 2012; 136:174315. [DOI: 10.1063/1.4709611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
11
|
Shizu K, Sato T, Tanaka K, Kaji H. Electron–vibration interactions in triphenylamine cation: Why are triphenylamine-based molecules good hole-transport materials? Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2009.12.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|