1
|
Reyes C, León-Muñoz LM, Pistillo A, Jóhannesdóttir Schmidt SA, Kristensen KB, Puente D, LLorente-García A, Huerta-Álvarez C, Pottegård A, Duarte-Salles T. Flecainide and risk of skin neoplasms: Results of a large nested case-control study in Spain and Denmark. Front Pharmacol 2022; 13:1002451. [PMID: 36618916 PMCID: PMC9822716 DOI: 10.3389/fphar.2022.1002451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background: A previous study in Denmark suggested an increased melanoma risk associated with the use of flecainide. Objective: To study the association between flecainide use and the risk of melanoma and non-melanoma skin cancer in Spain and Denmark. Methods: We conducted a multi-database case-control study in (database/study period) Spain (SIDIAP/2005-2017 and BIFAP/2007-2017) and Denmark (Danish registries/2001-2018). We included incident cases of melanoma or non-melanoma skin cancer (NMSC) aged ≥18 with ≥2 years of previous data (≥10 years for Denmark) before the skin cancer and matched them to controls (10:1 by age and sex). We excluded persons with immunosuppression or previous cancer. We defined ever-use as any prescription fill and high-use as a cumulative dose of at least 200 g (reference: never-use). We categorized a cumulative dose for a dose-response assessment. We used conditional logistic regression to compute ORs (95% CI) adjusted for photosensitizing, anti-neoplastic, disease-specific drugs and comorbidities. Results: The total numbers of melanoma/NMSC cases included were 7,809/64,230 in SIDIAP, 4,661/31,063 in BIFAP, and 27,978/152,821 in Denmark. In Denmark, high-use of flecainide was associated with increased adjusted ORs of skin cancer compared with never-use [melanoma: OR 1.97 (1.38-2.81); NMSC: OR 1.34 (1.15-1.56)]. In Spain, an association between high-use of flecainide and NMSC was also observed [BIFAP: OR 1.42 (1.04-1.93); SIDIAP: OR 1.19 (0.95-1.48)]. There was a non-significant dose-response pattern for melanoma in Denmark and no apparent dose-response pattern for NMSC in any of the three databases. We found similar results for ever-use of flecainide. Conclusion: Flecainide use was associated with an increased risk of melanoma (Denmark only) and NMSC (Denmark and Spain) but without substantial evidence of dose-response patterns. Further studies are needed to assess for possible unmeasured confounders.
Collapse
Affiliation(s)
- Carlen Reyes
- Fundació Institut Universitari per a la Recerca a L'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Luz M León-Muñoz
- Delegation for the National Plan on Drugs, Ministry of Health, Madrid, Spain
| | - Andrea Pistillo
- Fundació Institut Universitari per a la Recerca a L'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Sigrún Alba Jóhannesdóttir Schmidt
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper Bruun Kristensen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Diana Puente
- Fundació Institut Universitari per a la Recerca a L'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ana LLorente-García
- Pharmacoepiemiology and Pharmacovigilance Division, Spanish Agency for Medicines and Clinical Devices-AEMPS, Madrid, Spain
| | - Consuelo Huerta-Álvarez
- Department of Public Health & Maternal and Child Health, Faculty of Medicine. Complutense University of Madrid-UCM, Madrid, Spain
| | - Anton Pottegård
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la Recerca a L'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| |
Collapse
|
2
|
Chandra S, Qureshi S, Chopra D, Dwivedi A, Ray RS. Involvement of Type-I & Type-II Photodynamic Reactions in Photosensitization of Fragrance Ingredient 2-acetonaphthone. Photochem Photobiol 2022; 98:1050-1058. [PMID: 35038766 DOI: 10.1111/php.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
2-acetonaphthone (2-ACN) is a synthetic fragrance material used in various cosmetics, as an adulterant. Due to its frequent use, we have conducted an in-depth study to understand the photosensitizing potential of 2-ACN. Results of this study illustrate that 2-ACN showed photodegradation in 4 hrs under ambient UVR (UV radiations) and sunlight exposure. It generated (1-25µg/ml) superoxide anion radical (O2 ·- ) and singlet oxygen (1 O2 ) in the presence of UVR/sunlight through in-chemico and in-vitro test systems. 2-ACN (10 µg/ml) showed 43.9 % and 57.4 % reduction in cell viability under UVA and sunlight, respectively. Photosensitized 2-ACN generated intracellular ROS (6 folds in UVA; 8 folds in sunlight), which compromises the endoplasmic reticulum and mitochondrial membrane potential leading to cell death. Acridine orange/ethidium bromide dual staining and annexin-V/PI uptake showed cell death caused via 2-ACN under UVR exposure. The above findings signify the role of ROS via Type-I & Type-II photodynamic pathways in photosensitization of 2-ACN that ultimately promotes photodamage of important cellular organelles leading to cell death. The study advocates that solar radiation should be avoided by the users after the application of cosmetic products contain 2-ACN.
Collapse
Affiliation(s)
- Sonam Chandra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saba Qureshi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepti Chopra
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratan Singh Ray
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow-226001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Tamarit L, El Ouardi M, Lence E, Andreu I, González-Bello C, Vayá I, Miranda MA. Switching from ultrafast electron transfer to proton transfer in excited drug–protein complexes upon biotransformation. Chem Sci 2022; 13:9644-9654. [PMID: 36091919 PMCID: PMC9400592 DOI: 10.1039/d2sc03257k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Photosensitization by drugs is directly related with the excited species and the photoinduced processes arising from interaction with UVA light. In this context, the ability of gefitinib (GFT), a tyrosine kinase inhibitor (TKI) used for the treatment of a variety of cancers, to induce phototoxicity and photooxidation of proteins has recently been demonstrated. In principle, photodamage can be generated not only by a given drug but also by its photoactive metabolites that maintain the relevant chromophore. In the present work, a complete study of O-desmorpholinopropyl gefitinib (GFT-MB) has been performed by means of fluorescence and ultrafast transient absorption spectroscopies, in addition to molecular dynamics (MD) simulations. The photobehavior of the GFT-MB metabolite in solution is similar to that of GFT. However, when the drug or its metabolite are in a constrained environment, i.e. within a protein, their behavior and the photoinduced processes that arise from their interaction with UVA light are completely different. For GFT in complex with human serum albumin (HSA), locally excited (LE) singlet states are mainly formed; these species undergo photoinduced electron transfer with Tyr and Trp. By contrast, since GFT-MB is a phenol, excited state proton transfer (ESPT) to form phenolate-like excited species might become an alternative deactivation pathway. As a matter of fact, the protein-bound metabolite exhibits higher fluorescence yields and longer emission wavelengths and lifetimes than GFT@HSA. Ultrafast transient absorption measurements support direct ESPT deprotonation of LE states (rather than ICT), to form phenolate-like species. This is explained by MD simulations, which reveal a close interaction between the phenolic OH group of GFT-MB and Val116 within site 3 (subdomain IB) of HSA. The reported findings are relevant to understand the photosensitizing properties of TKIs and the role of biotransformation in this type of adverse side effects. The photoinduced processes from the protein-bound GFT result in electron transfer, while those related with the photoactive metabolite GFT-MB induce excited state proton transfer to form phenolate-like excited species.![]()
Collapse
Affiliation(s)
- Lorena Tamarit
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Meryem El Ouardi
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Miguel A. Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia, Spain
| |
Collapse
|
4
|
Tamarit L, El Ouardi M, Andreu I, Vayá I, Miranda MA. Photoprocesses of the tyrosine kinase inhibitor gefitinib: from femtoseconds to microseconds and from solution to cells. Chem Sci 2021; 12:12027-12035. [PMID: 34667568 PMCID: PMC8457384 DOI: 10.1039/d1sc03154f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Gefitinib (GFT) is a tyrosine kinase inhibitor currently used for the treatment of metastatic non-small cell lung cancer. Although it has been suggested that GFT can be phototoxic, there are no systematic studies on this issue. Here, the photosensitizing potential of GFT has been assessed by means of NRU assays and protein photooxidation. In addition, a thorough photophysical study is presented based on ultrafast transient absorption spectroscopy, fluorescence and laser flash photolysis. Transient species generated after excitation of GFT have been characterized in solution and in biological environments (i.e. HSA and HaCaT cells) to gain insight into the mechanisms involved in photodamage. The photobehavior of GFT was strongly medium-dependent. Excitation of the drug resulted in the formation of locally excited (LE) singlet states (1GFT*), which were found to be the main emissive species in non-polar solvents and also within HSA and HaCaT cells. By contrast, in polar solvents, LE states rapidly evolved (∼1 ps) towards the formation of longer-lived intramolecular charge transfer (ICT) states. The triplet excited state of GFT (3GFT*) can be formed through intersystem crossing from 1GFT* in non-polar solvents and from ICT states in the polar ones, or in the particular case of ethanol, by photosensitization using 2-methoxyacetophenone as an energy donor. In the HSA environment, 3GFT* was hardly detected due to quenching of its LE 1GFT* precursor by Trp through an electron transfer process. Accordingly, HSA photooxidation by GFT was demonstrated using the protein carbonylation method. In summary, a good correlation is established between the photophysical behavior and the photobiological properties of GFT, which provides a mechanistic basis for the observed phototoxicity. Excitation of gefitinib leads to the formation of locally excited (LE) and/or charge transfer (ICT) states in the ps scale. In solution, both can evolve to the excited triplet state. In proteins, quenching of LE by electron donors leads to oxidation.![]()
Collapse
Affiliation(s)
- Lorena Tamarit
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València Camino de Vera s/n 46022 València Spain .,Unidad Mixta de Investigación, Universitat Politècnica de València, Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe Avenida de Fernando Abril Martorell 106 46026 València Spain
| | - Meryem El Ouardi
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València Camino de Vera s/n 46022 València Spain .,Unidad Mixta de Investigación, Universitat Politècnica de València, Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe Avenida de Fernando Abril Martorell 106 46026 València Spain
| | - Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València Camino de Vera s/n 46022 València Spain .,Unidad Mixta de Investigación, Universitat Politècnica de València, Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe Avenida de Fernando Abril Martorell 106 46026 València Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València Camino de Vera s/n 46022 València Spain .,Unidad Mixta de Investigación, Universitat Politècnica de València, Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe Avenida de Fernando Abril Martorell 106 46026 València Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València Camino de Vera s/n 46022 València Spain .,Unidad Mixta de Investigación, Universitat Politècnica de València, Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe Avenida de Fernando Abril Martorell 106 46026 València Spain
| |
Collapse
|
5
|
Balkrishna A, Arya V, Sharma IP. Anti-Cancer and Anti-Inflammatory Potential of Furanocoumarins from Ammi majus L. Anticancer Agents Med Chem 2021; 22:1030-1036. [PMID: 34431469 DOI: 10.2174/1871520621666210824113128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
Secondary metabolites have potential benefits to human being. They are used in the food, agricultural and pharmaceutical industries. The secondary metabolite of furanocoumarins from different plant sources is essential in various skin-related ailments. Biologically, these chemicals are isolated from different plants in the Apiaceae, Fabaceae, Rutaceae and Moraceae families. Ammi Majus L. is one of the most common plants in the family of Apiaceae with a large quantity of derivatives. The furanocoumarin derivatives defend the plant by fighting external enemies by systemic acquired resistance (SAR). Via suppressing or retarding microbial growth in infected parts, these derivatives, along with SAR, help to alleviate inflammation in the human body. Latest evidence of these compounds has been established in the treatment of cancer, but the mechanism that needs to be elaborated is not yet understood. Recent studies have shown that furanocoumarin derivatives bind to DNA base pairs and block DNA replication. This may be a potential pathway that helps to regulate the growth of cancerous cells. This article reflects on the pharmaceutical data of furanocoumarins and their different mechanisms in these cases.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar - 249 405 (Uttarakhand) . India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar - 249 405 (Uttarakhand) . India
| | - Ishwar Prakash Sharma
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar - 249 405 (Uttarakhand) . India
| |
Collapse
|
6
|
Kowalska J, Rok J, Rzepka Z, Wrześniok D. Drug-Induced Photosensitivity-From Light and Chemistry to Biological Reactions and Clinical Symptoms. Pharmaceuticals (Basel) 2021; 14:723. [PMID: 34451820 PMCID: PMC8401619 DOI: 10.3390/ph14080723] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023] Open
Abstract
Photosensitivity is one of the most common cutaneous adverse drug reactions. There are two types of drug-induced photosensitivity: photoallergy and phototoxicity. Currently, the number of photosensitization cases is constantly increasing due to excessive exposure to sunlight, the aesthetic value of a tan, and the increasing number of photosensitizing substances in food, dietary supplements, and pharmaceutical and cosmetic products. The risk of photosensitivity reactions relates to several hundred externally and systemically administered drugs, including nonsteroidal anti-inflammatory, cardiovascular, psychotropic, antimicrobial, antihyperlipidemic, and antineoplastic drugs. Photosensitivity reactions often lead to hospitalization, additional treatment, medical management, decrease in patient's comfort, and the limitations of drug usage. Mechanisms of drug-induced photosensitivity are complex and are observed at a cellular, molecular, and biochemical level. Photoexcitation and photoconversion of drugs trigger multidirectional biological reactions, including oxidative stress, inflammation, and changes in melanin synthesis. These effects contribute to the appearance of the following symptoms: erythema, swelling, blisters, exudation, peeling, burning, itching, and hyperpigmentation of the skin. This article reviews in detail the chemical and biological basis of drug-induced photosensitivity. The following factors are considered: the chemical properties, the influence of individual ranges of sunlight, the presence of melanin biopolymers, and the defense mechanisms of particular types of tested cells.
Collapse
Affiliation(s)
| | | | | | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.K.); (J.R.); (Z.R.)
| |
Collapse
|
7
|
Limones-Herrero D, Pérez-Ruiz R, Lence E, González-Bello C, Miranda MA, Jiménez MC. Mapping a protein recognition centre with chiral photoactive ligands. An integrated approach combining photophysics, reactivity, proteomics and molecular dynamics simulation studies. Chem Sci 2017; 8:2621-2628. [PMID: 28553497 PMCID: PMC5431658 DOI: 10.1039/c6sc04900a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/30/2016] [Indexed: 01/10/2023] Open
Abstract
A multidisciplinary strategy to obtain structural information on the intraprotein region is described here. As probe ligands, (S)- and (R)-CPFMe (the methyl esters of the chiral drug carprofen) have been selected, while bovine α1-acid glycoprotein (BAAG) has been chosen as a biological host. The procedure involves the separate irradiation of the BAAG/(S)-CPFMe and BAAG/(R)-CPFMe complexes, coupled with fluorescence spectroscopy, laser flash photolysis, proteomic analysis, docking and molecular dynamics simulations. Thus, irradiation of the BAAG/CPFMe complexes at λ = 320 nm was followed by fluorescence spectroscopy. The intensity of the emission band obtained after irradiation indicated photodehalogenation, whereas its structureless shape suggested covalent binding of the resulting radical CBZMe˙ to the biopolymer. After gel filtration chromatography, the spectra still displayed emission, in agreement with covalent attachment of CBZMe˙ to BAAG. Stereodifferentiation was observed in this process. After trypsin digestion and ESI-MS/MS, the incorporation of CBZMe was detected at Phe68. Docking and molecular dynamics simulation studies, which were carried out using a homology model of BAAG, reveal that the closer proximity of the aromatic moiety of the (S)-enantiomer to the phenyl group of Phe68 would be responsible for the experimentally observed, more effective chemical modification of the protein. The proposed tridimensional structure of BAAG covalently modified by the two enantiomers is also provided. In principle, this approach can be extended to a variety of protein/ligand complexes.
Collapse
Affiliation(s)
- Daniel Limones-Herrero
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC , Universitat Politècnica de València , Camino de Vera s/n , 46022 , Valencia , Spain . ;
| | - Raúl Pérez-Ruiz
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC , Universitat Politècnica de València , Camino de Vera s/n , 46022 , Valencia , Spain . ;
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , C/ Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , C/ Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC , Universitat Politècnica de València , Camino de Vera s/n , 46022 , Valencia , Spain . ;
| | - M Consuelo Jiménez
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC , Universitat Politècnica de València , Camino de Vera s/n , 46022 , Valencia , Spain . ;
| |
Collapse
|