1
|
Ndreu L, Sasse S, Karlberg AT, Karlsson I. Haptenation of Macrophage Migration Inhibitory Factor: A Potential Biomarker for Contact Hypersensitivity. FRONTIERS IN TOXICOLOGY 2022; 4:856614. [PMID: 35465102 PMCID: PMC9019732 DOI: 10.3389/ftox.2022.856614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The immunological response in contact hypersensitivity is incited by small electrophilic compounds, known as haptens, that react with endogenous proteins after skin absorption. However, the identity of hapten-modified proteins seen as immunogenic remains as yet largely unknown. In a recent study, we have for the first time identified a hapten-modified protein in the local lymph nodes of mice treated topically with the model hapten tetramethylrhodamine isothiocyanate (TRITC). The TRITC modification was located on the N-terminal proline of the protein macrophage migration inhibitory factor (MIF). The focus of the current study was to investigate the presence of the same hapten-protein conjugate in blood samples from mice treated topically with TRITC. Furthermore, TRITC modifications of the two major blood proteins, namely hemoglobin (Hb) and albumin (Alb), as well as TRITC modifications of MIF other than the N-terminal proline, were examined. Following incubation with different molar ratios of TRITC, a proteomic approach was applied to characterize conjugate formation of the three aforementioned proteins, using high resolution mass spectrometry (HRMS). The targeted screening of the TRITC-treated mice blood and lymph node samples for these sites led to the identification of only the same TRITC-MIF conjugate previously detected in the lymph nodes. No Hb and Alb conjugates were detected. Quantification of both the TRITC-modified and unmodified N-terminal peptide of MIF in blood and lymph node samples gave interesting insights of MIF’s role in murine contact hypersensitivity. Incubation of MIF with four different haptens encompassing different reactivity mechanisms and potencies, showed adduct formation at different amino acid residues, suggesting that MIF can be the preferred target for a wide variety of haptens. The present study provides essential progress toward understanding of hapten-protein conjugate formation in contact hypersensitivity and identifies hapten-modified MIF as a potential biomarker for this condition. Further investigation of MIF as a target protein can be a next step to determine if MIF is a biomarker that can be used to develop better diagnostic tools and targeted therapeutics for individuals with allergic contact dermatitis.
Collapse
Affiliation(s)
- Lorena Ndreu
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Samantha Sasse
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Ann-Therese Karlberg
- Department of Chemistry and Molecular Biology, Dermatochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Isabella Karlsson
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
- *Correspondence: Isabella Karlsson,
| |
Collapse
|
2
|
Ogueta IA, Christensson JB, Giménez-Arnau E, Brans R, Wilkinson M, Stingeni L, Foti C, Aerts O, Svedman C, Gonçalo M, Giménez-Arnau A. Limonene and linalool hydroperoxides review: pros and cons for routine patch testing. Contact Dermatitis 2022; 87:1-12. [PMID: 35122274 DOI: 10.1111/cod.14064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/01/2022]
Abstract
Limonene and linalool are among the most common fragrance terpenes used in products of everyday life. They are pre-haptens forming hydroperoxides (Lim-OOHs, Lin-OOHs) upon oxidation inducing frequent positive patch test reactions in patients with dermatitis. Still, they are not yet routinely tested in Europe. This review evaluates the patch testing experience with Lim-OOHs and Lin-OOHs by answering key questions such as whether hydroperoxide patch testing is warranted, understand difficulties or challenges related to the reading and interpretation of hydroperoxide patch test results with currently available material, assessing their relevance. Studies are increasingly pointing out to high percentages of positive reactions in patients consecutively patch tested with these oxidized products. An association between a positive clinical history and a strong patch test reaction has been described, but problems with doubtful/irritant reactions have also been reported. Considering the high frequencies of relevant positive reactions, the incorporation of Lim-OOHs 0.3% and Lin-OOHs 1% in the baseline series could be discussed and is maybe justified. Since exposure, sensitization and elicitation limits of Lim-OOHs and Lin-OOHs in the products still need to be better determined, an assessment of previous exposure, possible sensitizations and reactions may help to improve the clinical assessment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Isabel A Ogueta
- Department of Dermatology, Hospital del Mar, IMIM, Universitat Autònoma. Barcelona, Spain.,Department of Dermatology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Johanna Brared Christensson
- Dermatochemistry and Skin Allergy, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. Citysjukhuset +7, Gothenburg, Sweden
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, Institute of Chemistry CNRS UMR 7177, Strasbourg, France
| | - Richard Brans
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - Mark Wilkinson
- Dermatology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Luca Stingeni
- Dermatology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Caterina Foti
- Department of Biomedical Science and Human Oncology, Dermatology Section, University of Bari "Aldo Moro", Bari, Italy
| | - Olivier Aerts
- University Hospital Antwerp (UZA) and University of Antwerp, Antwerp, Belgium
| | - Cecilia Svedman
- Department of Occupational and Environmental Dermatology, Skane University Hospital, Lund University, Malmö, Sweden
| | - Margarida Gonçalo
- Department of Dermatology, University Hospital and Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Giménez-Arnau
- Department of Dermatology, Hospital del Mar, IMIM, Universitat Autònoma. Barcelona, Spain
| |
Collapse
|
3
|
Identification of Allergens in Complex Mixtures and Products. Contact Dermatitis 2021. [DOI: 10.1007/978-3-030-36335-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Kuresepi S, Vileno B, Lepoittevin JP, Giménez-Arnau E. Mechanistic Insights on Skin Sensitization to Linalool Hydroperoxides: EPR Evidence on Radical Intermediates Formation in Reconstructed Human Epidermis and 13C NMR Reactivity Studies with Thiol Residues. Chem Res Toxicol 2020; 33:1922-1932. [PMID: 32441093 DOI: 10.1021/acs.chemrestox.0c00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linalool is one of the most commonly used fragrance terpenes in consumer products. While pure linalool is considered as non-allergenic because it has a very low skin sensitization potential, its autoxidation on air leads to allylic hydroperoxides that have been shown to be major skin sensitizers. These hydroperoxides have the potential to form antigens via radical mechanisms. In order to obtain in-depth insights of such reactivity, we first investigated the formation of free radicals derived from linalool hydroperoxides in situ in a model of human reconstructed epidermis by electron paramagnetic resonance combined with spin trapping. The formation of carbon- and oxygen-centered radical species derived from the hydroperoxides was especially evidenced in an epidermis model, mimicking human skin and thus closer to what may happen in vivo. To further investigate these results, we synthesized linalool hydroperoxides containing a 13C-substitution at positions precursor of carbon radicals to elucidate if one of these positions could react with cysteine, its thiol chemical function being one of the most labile groups prone to react through radical mechanisms. Reactions were followed by mono- and bidimensional 13C NMR. We validated that carbon radicals derived from allylic hydrogen abstraction by the initially formed alkoxyl radical and/or from its β-scission can alter directly the lateral chain of cysteine forming adducts via radical processes. Such results provide an original vision on the mechanisms likely involved in the reaction with thiol groups that might be present in the skin environment. Consequently, the present findings are a step ahead toward the understanding of protein binding processes to allergenic allylic hydroperoxides of linalool through the involvement of free radical species and thus of their sensitizing potential.
Collapse
Affiliation(s)
- Salen Kuresepi
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | - Bertrand Vileno
- POMAM Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France.,French EPR Federation of Research, REseau NAtional de RPE interDisciplinaire, RENARD, Fédération IR-RPE CNRS 3443, F-67000 Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| |
Collapse
|
5
|
Hedberg YS. Chromium and leather: a review on the chemistry of relevance for allergic contact dermatitis to chromium. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00027-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
As other causes decline in importance, chromium-tanned leather has become a more important source for chromium allergy, which affects around 1% of the general population. The aim of this review is to give suggestions on how to minimize the risk of leather-related allergic contact dermatitis, which can be elicited in chromium-allergic persons by hexavalent and trivalent chromium released from leather. Hexavalent chromium is the more potent chromium form and requires a lower skin dose to elicit allergic reactions. It is formed on the surface of some, antioxidant-free, leathers at dry conditions (< 35% relative humidity) and is influenced by the tanning process and other conditions, such as UV irradiation, contact with alkaline solutions, and leather age. Trivalent chromium is the dominant form released from chromium-tanned leather and its released amount is sufficient to elicit allergic reactions in some chromium-allergic individuals when they are exposed repetitively and over longer time (days – months). A low initial test result (< 3 mg/kg) for hexavalent chromium with the current standard test (ISO 17075) does not guarantee a low release of chromium from the leather or a low release of hexavalent chromium under typical exposure conditions during the service life of the leather. Information, labels, and certificates regarding leather products are often insufficient to protect chromium-allergic individuals. Correct labelling and information on the possible content of different allergens, as well as different tanning alternatives for certain leather products, are crucial.
Graphical abstract
Collapse
|
6
|
An uncommon outbreak of irritant contact dermatitis caused by rubber accelerators: a historical cohort study. J RUBBER RES 2019. [DOI: 10.1007/s42464-019-00023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Sahli F, Godard A, Vileno B, Lepoittevin JP, Giménez-Arnau E. Formation of methyl radicals derived from cumene hydroperoxide in reconstructed human epidermis: an EPR spin trapping confirmation by using 13C-substitution. Free Radic Res 2019; 53:737-747. [PMID: 31130017 DOI: 10.1080/10715762.2019.1624741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dermal exposure to cumene hydroperoxide (CumOOH) during manufacturing processes is a toxicological issue for the industry. Its genotoxicity, mutagenic action, ability to promote skin tumour, capacity to induce epidermal hyperplasia, and aptitude to induce allergic and irritant skin contact dermatitis are well known. These toxic effects appear to be mediated through the activation to free radical species such as hydroxyl, alkoxyl, and alkyl radicals characterised basically by electron paramagnetic resonance (EPR) and spin-trapping (ST) techniques. To be a skin sensitiser CumOOH needs to covalently bind to skin proteins in the epidermis to form the antigenic entity triggering the immunotoxic reaction. Cleavage of the O-O bond allows formation of unstable CumO•/CumOO• radicals rearranging to longer half-life specific carbon-centred radicals R• proposed to be at the origin of the antigen formation. Nevertheless, it is not still clear which R• is precisely formed in the epidermis and thus involved in the sensitisation process. The aim of this work was to elucidate in conditions closer to real-life sensitisation which specific R• are formed in a 3D reconstructed human epidermis (RHE) model by using 13C-substituted CumOOH at carbon positions precursors of potentially reactive radicals and EPR-ST. We demonstrated that most probably methyl radicals derived from β-scission of CumO• radicals occur in RHE through a one-electron reductive pathway suggesting that these could be involved in the antigen formation inducing skin sensitisation. We also describe a coupling between nitroxide radicals and β position 13C atoms that could be of an added value to the very few examples existing for the coupling of radicals with 13C atoms.
Collapse
Affiliation(s)
- Fatma Sahli
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| | - Amélie Godard
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| | - Bertrand Vileno
- b POMAM Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France.,c French EPR Federation of Research, REseau NAtional de Rpe InterDisciplinaire (RENARD) , France
| | | | - Elena Giménez-Arnau
- a Dermatochemistry Laboratory, University of Strasbourg-CNRS UMR 7177 , Strasbourg , France
| |
Collapse
|
8
|
Sahli F, Sousa MSE, Vileno B, Lichter J, Lepoittevin JP, Blömeke B, Giménez-Arnau E. Understanding the skin sensitization capacity of ascaridole: a combined study of chemical reactivity and activation of the innate immune system (dendritic cells) in the epidermal environment. Arch Toxicol 2019; 93:1337-1347. [DOI: 10.1007/s00204-019-02444-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
|
9
|
Identification of Allergens in Complex Mixtures and Products. Contact Dermatitis 2019. [DOI: 10.1007/978-3-319-72451-5_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Bogen KT, Garry MR. Risks of Allergic Contact Dermatitis Elicited by Nickel, Chromium, and Organic Sensitizers: Quantitative Models Based on Clinical Patch Test Data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2018; 38:1036-1051. [PMID: 29023909 DOI: 10.1111/risa.12902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/30/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Risks of allergic contact dermatitis (ACD) from consumer products intended for extended (nonpiercing) dermal contact are regulated by E.U. Directive EN 1811 that limits released Ni to a weekly equivalent dermal load of ≤0.5 μg/cm2 . Similar approaches for thousands of known organic sensitizers are hampered by inability to quantify respective ACD-elicitation risk levels. To help address this gap, normalized values of cumulative risk for eliciting a positive ("≥+") clinical patch test response reported in 12 studies for a total of n = 625 Ni-sensitized patients were modeled in relation to observed ACD-eliciting Ni loads, yielding an approximate lognormal (LN) distribution with a geometric mean and standard deviation of GMNi = 15 μg/cm2 and GSDNi = 8.0, respectively. Such data for five sensitizers (including formaldehyde and 2-hydroxyethyl methacrylate) were also ∼LN distributed, but with a common GSD value equal to GSDNi and with heterogeneous sensitizer-specific GM values each defining a respective ACD-eliciting potency GMNi /GM relative to Ni. Such potencies were also estimated for nine (meth)acrylates by applying this general LN ACD-elicitation risk model to respective sets of fewer data. ACD-elicitation risk patterns observed for Cr(VI) (n = 417) and Cr(III) (n = 78) were fit to mixed-LN models in which ∼30% and ∼40% of the most sensitive responders, respectively, were estimated to exhibit a LN response also governed by GSDNi . The observed common LN-response shape parameter GSDNi may reflect a common underlying ACD mechanism and suggests a common interim approach to quantitative ACD-elicitation risk assessment based on available clinical data.
Collapse
|
11
|
Kuresepi S, Vileno B, Turek P, Lepoittevin JP, Giménez-Arnau E. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept. Free Radic Res 2018; 52:171-179. [DOI: 10.1080/10715762.2017.1420906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Salen Kuresepi
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| | - Bertrand Vileno
- POMAM Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
- French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS #3443, Strasbourg, France
| | - Philippe Turek
- POMAM Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
- French EPR Federation of Research, REseau NAtional de Rpe interDisciplinaire, RENARD, Fédération IR-RPE CNRS #3443, Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, University of Strasbourg, CNRS UMR 7177, Institut le Bel, Strasbourg, France
| |
Collapse
|
12
|
Hamada H, Zimerson E, Bruze M, Isaksson M, Engfeldt M. Sensitizing Capacities and Cross-Reactivity Patterns of Some Diisocyanates and Amines Using the Guinea-Pig Maximization Test. Can p-phenylenediamine be Used as a Marker for Diisocyanate Contact Allergy? ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1874372201711010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Isocyanates are mainly considered respiratory allergens but can also cause contact allergy. Diphenylmethane-4,4′-diamine (4,4′-MDA) has been considered a marker for diphenylmethane-4,4′-diisocyanate (4,4′-MDI) contact allergy. Furthermore, overrepresentation of positive patch-test reactions top-phenylenediamine (PPD) in 4,4′-MDA positive patients have been reported.Objectives:To investigate the sensitizing capacities of toluene-2,4-diisocyanate (2,4-TDI) and PPD and the cross-reactivity of 4,4′-MDA, 2,4-TDI, dicyclohexylmethane-4,4′-diamine (4,4′-DMDA), dicyclohexylmethane-4,4′-diisocyanate (4,4′-DMDI), 4,4′-MDI and PPD.Methods:The Guinea Pig Maximization Test (GPMT) was used.Results:PPD was shown to be a strong sensitizer (p<0.001). Animals sensitized to PPD showed cross-reactivity to 4,4′-MDA (p<0.001). Animals sensitized to 4,4′-MDA did not show cross-reactivity to PPD. 8 animals sensitized to 2,4-TDI were sacrificed due to toxic reactions at the induction site and could thus not be fully evaluated.Conclusion:PPD was shown to be a strong sensitizer. However, it cannot be used as a marker for isocyanate contact allergy. On the other hand, positive reactions to 4,4′-MDA could indicate a PPD allergy. The intradermal induction concentration of 2,4-TDI (0.70% w/v) can induce strong local toxic reactions in guinea-pigs and should be lowered.
Collapse
|
13
|
Malmberg P, Guttenberg T, Ericson MB, Hagvall L. Imaging mass spectrometry for novel insights into contact allergy - a proof-of-concept study on nickel. Contact Dermatitis 2017; 78:109-116. [PMID: 29168189 DOI: 10.1111/cod.12911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/30/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND In spite of extensive regulation to limit exposure, nickel remains the main cause of contact allergy in the general population. More detailed knowledge on the skin uptake of haptens is required. So far, no method exists for the visualization of this clinically relevant hapten and its distribution in the skin. OBJECTIVES To show, in terms of a proof of concept, that imaging mass spectrometry [time of flight secondary ion mass spectrometry (ToF-SIMS)] can be applied for investigation of the penetration and distribution of nickel in human skin. METHOD Full-thickness human skin obtained from breast reduction surgery was exposed to nickel sulfate (5% in deionized water) for 24 h in Franz-type diffusion cells. Biopsies were obtained from nickel-treated samples and control (deionized water). The tissue was sliced, and analysed with ToF-SIMS, generating high-resolution images of ion distribution in the epidermis and upper dermis. RESULTS The skin layers could be discerned from the ToF-SIMS data, particularly on the basis of the collagen signal. Nickel ions were localized to the stratum corneum and upper epidermis. CONCLUSIONS This is the first time that ToF-SIMS has been applied to trace the distribution of a hapten in human skin. Proof of principle was shown for nickel, and the technique can, in the future, be expanded for investigation of the skin distribution of clinically relevant sensitizers in general.
Collapse
Affiliation(s)
- Per Malmberg
- Department of Chemistry and Chemical Engineering, Centre for Imaging Mass Spectrometry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Thomas Guttenberg
- Department of Chemistry and Chemical Engineering, Centre for Imaging Mass Spectrometry, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Biomedical Photonics Group, Department of Molecular Biology and Chemistry, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Marica B Ericson
- Biomedical Photonics Group, Department of Molecular Biology and Chemistry, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Lina Hagvall
- Occupational Dermatology, Department of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, 413 45, Gothenburg, Sweden
| |
Collapse
|
14
|
Lang M, Giménez-Arnau E, Lepoittevin JP. Is it possible to assess the allergenicity of mixtures based onin chemicomethods? Preliminary results on common fragrance aldehydes. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Matthieu Lang
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg (CNRS UMR 7177); Université de Strasbourg, Institut le Bel, 4 Rue Blaise Pascal; 67081 Strasbourg France
| | - Elena Giménez-Arnau
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg (CNRS UMR 7177); Université de Strasbourg, Institut le Bel, 4 Rue Blaise Pascal; 67081 Strasbourg France
| | - Jean-Pierre Lepoittevin
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg (CNRS UMR 7177); Université de Strasbourg, Institut le Bel, 4 Rue Blaise Pascal; 67081 Strasbourg France
| |
Collapse
|
15
|
Abstract
For toxicologists who are in any way associated with skin sensitisation, the last two decades have seen a series of fundamental changes. We have migrated from old-style guinea-pig assays, via the refined and reduced Local Lymph Node Assay (LLNA), to witness the imminent dominance of in vitro and in silico methods. Yet, over the same period, the use of the output data for human safety assurance has evolved from ‘black box’ risk assessment, via the quantitative risk assessment enabled by the LLNA measurement of potency, to a new period of relative uncertainty. This short review will endeavour to address these topics, all the while keeping a focus on three essential principles: a) that skin sensitisation potential is intrinsic in the molecular structure of the chemical; b) that test methods should have a mechanistic foundation; and finally c) that the only reason for undertaking any skin sensitisation work has to be the protection of human health.
Collapse
|
16
|
Debeuckelaere C, Moussallieh FM, Elbayed K, Namer IJ, Berl V, Giménez-Arnau E, Lepoittevin JP. In situ chemical behaviour of methylisothiazolinone (MI) and methylchloroisothiazolinone (MCI) in reconstructed human epidermis: a new approach to the cross-reactivity issue. Contact Dermatitis 2016; 74:159-67. [PMID: 26899805 DOI: 10.1111/cod.12524] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/22/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Methylisothiazolinone (MI) [with methylchloroisothiazolinone (MCI) in a ratio of 1:3, a well-recognized allergenic preservative] was released as an individual preservative in the 2000s for industrial products and in 2005 for cosmetics. The high level of exposure to MI since then has provoked an epidemic of contact allergy to MI, and an increase in MI/MCI allergy. There are questions concerning the MI/MCI cross-reaction pattern. OBJECTIVES To bring a new perspective on the MI/MCI cross-reactivity issue by studying their in situ chemical behaviour in 3D reconstructed human epidermis (RHE). METHODS MI and MCI were synthesized with (13) C substitution at positions C-4/C-5 and C-5, respectively. Their in situ chemical behaviours in an RHE model were followed by use of the high-resolution magic angle spinning nuclear magnetic resonance technique. RESULTS MI was found to react exclusively with cysteine thiol residues, whereas MCI reacted with histidines and lysines. The reaction mechanisms were found to be different for MI and MCI, and the adducts formed had different molecular structures. CONCLUSION In RHE, different MI/MCI reactions towards different nucleophilic amino acids were observed, making it difficult to explain cross-reactivity between MI and MCI.
Collapse
Affiliation(s)
- Camille Debeuckelaere
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| | - François-Marie Moussallieh
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France.,Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), UMR 7357/Université de Strasbourg - CNRS, 674012, Illkirch, France
| | - Karim Elbayed
- Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), UMR 7357/Université de Strasbourg - CNRS, 674012, Illkirch, France
| | - Izzie-Jacques Namer
- Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), UMR 7357/Université de Strasbourg - CNRS, 674012, Illkirch, France
| | - Valérie Berl
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| | - Elena Giménez-Arnau
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Dermatochemistry Laboratory, Institut de Chimie de Strasbourg, UMR 7177/Université de Strasbourg - CNRS, 67081, Strasbourg, France
| |
Collapse
|
17
|
Debeuckelaere C, Berl V, Elbayed K, Moussallieh FM, Namer IJ, Lepoittevin JP. Matrix Effect of Human Reconstructed Epidermis on the Chemoselectivity of a Skin Sensitizing α-Methylene-γ-Butyrolactone: Consequences for the Development of in Chemico Alternative Methods. Chem Res Toxicol 2015; 28:2192-8. [DOI: 10.1021/acs.chemrestox.5b00363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camille Debeuckelaere
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| | - Valérie Berl
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| | - Karim Elbayed
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - François-Marie Moussallieh
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Izzie-Jacques Namer
- Laboratoire
des sciences de l’ingénieur, de l’informatique
et de l’imagerie (ICube), CNRS UMR 7357 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - J.-P. Lepoittevin
- Institute
of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue
Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
18
|
Basketter D, White IR, McFadden JP, Kimber I. Hexyl cinnamal: consideration of skin-sensitizing properties and suitability as a positive control. Cutan Ocul Toxicol 2014; 34:227-31. [PMID: 24988491 DOI: 10.3109/15569527.2014.933973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hexyl cinnamal (HCA) is a widely used fragrance chemical, the low skin-sensitizing potency of which has made it a common choice for the use as a positive control for predictive toxicology assays. However, HCA is commonly negative in current candidate in vitro alternatives test methods. OBJECTIVE To review the evidence that HCA is a classifiable skin sensitizer against the standards set by the Globally Harmonized Scheme (GHS), and determine whether it represents an appropriate choice for a positive control substance for predictive testing. METHODS Using the GHS criteria, mechanistic data, and in vitro, in vivo and human evidence relating to HCA and skin sensitization have been reviewed. RESULTS The chemistry of HCA is consistent with potential for skin sensitization and predictive in vivo test data support this conclusion. However, the human data are relatively sparse, consistent with HCA possessing a low capacity to induce skin sensitization under conditions of consumer exposures. CONCLUSIONS Using GHS criteria (and applying a precautionary approach) HCA would classify as a weaker skin sensitizer than predicted by the local lymph node assay (LLNA). However, given the human experience, it is necessary to consider whether HCA is the most appropriate choice for use as a positive regulatory control.
Collapse
|
19
|
Basketter DA, Kimber I. Allergic contact dermatitis: is the reactive chemistry of skin sensitizers the whole story? Contact Dermatitis 2013; 68:244-5. [DOI: 10.1111/cod.12052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Elbayed K, Berl V, Debeuckelaere C, Moussallieh FM, Piotto M, Namer IJ, Lepoittevin JP. HR-MAS NMR Spectroscopy of Reconstructed Human Epidermis: Potential for the in Situ Investigation of the Chemical Interactions between Skin Allergens and Nucleophilic Amino Acids. Chem Res Toxicol 2013; 26:136-45. [DOI: 10.1021/tx300428u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karim Elbayed
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Valérie Berl
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Camille Debeuckelaere
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - François-Marie Moussallieh
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
- Department of Biophysics and Nuclear Medicine, Strasbourg University Hospital, 67098 Strasbourg, France
| | | | - Izzie-Jacques Namer
- Department of Biophysics and Nuclear Medicine, Strasbourg University Hospital, 67098 Strasbourg, France
- Institute of Biological Physics, Faculty of Medicine, LINC/CNRS UMR 7237 and University of Strasbourg, 67085 Strasbourg, France
| | - Jean-Pierre Lepoittevin
- Institute of Chemistry, CNRS UMR 7177 and University of Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
21
|
Kireche M, Peiffer JL, Antonios D, Fabre I, Giménez-Arnau E, Pallardy M, Lepoittevin JP, Ourlin JC. Evidence for Chemical and Cellular Reactivities of the Formaldehyde Releaser Bronopol, Independent of Formaldehyde Release. Chem Res Toxicol 2011; 24:2115-28. [DOI: 10.1021/tx2002542] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mustapha Kireche
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg, CNRS and Université de Strasbourg (UMR 7177), 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Jean-Luc Peiffer
- AFSSAPS, Unité BCM/DLC, 635 rue de la garenne, 34740 Vendargues, France
| | - Diane Antonios
- Universud, INSERM UMR 996, Faculty of Pharmacy, 5 rue JB Clément, 92290 Châtenay-Malabry, France
| | - Isabelle Fabre
- AFSSAPS, Unité BCM/DLC, 635 rue de la garenne, 34740 Vendargues, France
| | - Elena Giménez-Arnau
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg, CNRS and Université de Strasbourg (UMR 7177), 4 rue Blaise Pascal, 67081 Strasbourg, France
| | - Marc Pallardy
- Universud, INSERM UMR 996, Faculty of Pharmacy, 5 rue JB Clément, 92290 Châtenay-Malabry, France
| | - Jean-Pierre Lepoittevin
- Laboratoire de Dermatochimie, Institut de Chimie de Strasbourg, CNRS and Université de Strasbourg (UMR 7177), 4 rue Blaise Pascal, 67081 Strasbourg, France
| | | |
Collapse
|