A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation.
Sci Rep 2019;
9:13750. [PMID:
31551507 PMCID:
PMC6760111 DOI:
10.1038/s41598-019-50251-8]
[Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
Imaging software have become critical tools in the diagnosis and the treatment of abdominal aortic aneurysms (AAA). The aim of this study was to develop a fully automated software system to enable a fast and robust detection of the vascular system and the AAA. The software was designed from a dataset of injected CT-scans images obtained from 40 patients with AAA. Pre-processing steps were performed to reduce the noise of the images using image filters. The border propagation based method was used to localize the aortic lumen. An online error detection was implemented to correct errors due to the propagation in anatomic structures with similar pixel value located close to the aorta. A morphological snake was used to segment 2D or 3D regions. The software allowed an automatic detection of the aortic lumen and the AAA characteristics including the presence of thrombus and calcifications. 2D and 3D reconstructions visualization were available to ease evaluation of both algorithm precision and AAA properties. By enabling a fast and automated detailed analysis of the anatomic characteristics of the AAA, this software could be useful in clinical practice and research and be applied in a large dataset of patients.
Collapse