1
|
Hoekstra AG, Alowayyed S, Lorenz E, Melnikova N, Mountrakis L, van Rooij B, Svitenkov A, Závodszky G, Zun P. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0146. [PMID: 27698036 PMCID: PMC5052730 DOI: 10.1098/rsta.2016.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 05/27/2023]
Abstract
This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.
Collapse
Affiliation(s)
- Alfons G Hoekstra
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| | - Saad Alowayyed
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Eric Lorenz
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands Electric Ant Lab BV, Panamalaan 4 K, 1019AZ Amsterdam, The Netherlands
| | - Natalia Melnikova
- High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| | - Lampros Mountrakis
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Britt van Rooij
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Andrew Svitenkov
- High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| | - Gábor Závodszky
- Computational Science Laboratory, Institute for Informatics, Faculty of Science, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands
| | - Pavel Zun
- High Performance Computing Department, ITMO University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Hoekstra A, Chopard B, Coveney P. Multiscale modelling and simulation: a position paper. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A: MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES 2014; 372:rsta.2013.0377. [PMID: 24982256 DOI: 10.1098/rsta.2013.0377] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We argue that, despite the fact that the field of multiscale modelling and simulation has enjoyed significant success within the past decade, it still holds many open questions that are deemed important but so far have barely been explored. We believe that this is at least in part due to the fact that the field has been mainly developed within disciplinary silos. The principal topics that in our view would benefit from a targeted
multidisciplinary
research effort are related to reaching consensus as to what exactly one means by ‘multiscale modelling’, formulating a generic theory or calculus of multiscale modelling, applying such concepts to the urgent question of validation and verification of multiscale models, and the issue of numerical error propagation in multiscale models. Moreover, we believe that this would, in principle, also lay the foundation for more efficient, well-defined and usable multiscale computing environments. We believe that multidisciplinary research to fill in the gaps is timely, highly relevant, and with substantial potential impact on many scientific disciplines.
Collapse
Affiliation(s)
- Alfons Hoekstra
- Computational Science, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands
- National Research University ITMO, St Petersburg, Russian Federation
| | | | - Peter Coveney
- Centre for Computational Science, University College London, London, UK
| |
Collapse
|
3
|
Borgdorff J, Ben Belgacem M, Bona-Casas C, Fazendeiro L, Groen D, Hoenen O, Mizeranschi A, Suter JL, Coster D, Coveney PV, Dubitzky W, Hoekstra AG, Strand P, Chopard B. Performance of distributed multiscale simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:rsta.2013.0407. [PMID: 24982258 PMCID: PMC4084531 DOI: 10.1098/rsta.2013.0407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption.
Collapse
Affiliation(s)
- J Borgdorff
- Computational Science, Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M Ben Belgacem
- Computer Science Department, University of Geneva, 1227 Carouge, Switzerland
| | - C Bona-Casas
- Department of Applied Mathematics, University of A Coruña, 15001 A Coruña, Spain
| | - L Fazendeiro
- Department of Earth and Space Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - D Groen
- Centre for Computational Science, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - O Hoenen
- Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
| | - A Mizeranschi
- Nano Systems Biology, School of Biomedicine, University of Ulster, Coleraine BTS2 1SA, UK
| | - J L Suter
- Centre for Computational Science, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - D Coster
- Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany
| | - P V Coveney
- Centre for Computational Science, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | - W Dubitzky
- Nano Systems Biology, School of Biomedicine, University of Ulster, Coleraine BTS2 1SA, UK
| | - A G Hoekstra
- Computational Science, Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands National Research University ITMO, Kronverkskiy prospekt 49, 197101 St Petersburg, Russia
| | - P Strand
- Department of Earth and Space Sciences, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - B Chopard
- Computer Science Department, University of Geneva, 1227 Carouge, Switzerland
| |
Collapse
|
4
|
Zimny S, Chopard B, Malaspinas O, Lorenz E, Jain K, Roller S, Bernsdorf J. A Multiscale Approach for the Coupled Simulation of Blood Flow and Thrombus Formation in Intracranial Aneurysms. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.procs.2013.05.266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Borgdorff J, Mamonski M, Bosak B, Groen D, Belgacem MB, Kurowski K, Hoekstra AG. Multiscale Computing with the Multiscale Modeling Library and Runtime Environment. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.procs.2013.05.275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Tahir H, Hoekstra AG, Lorenz E, Lawford PV, Hose DR, Gunn J, Evans DJW. Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design. Interface Focus 2011; 1:365-73. [PMID: 22670206 DOI: 10.1098/rsfs.2010.0024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/03/2011] [Indexed: 12/11/2022] Open
Abstract
Neointimal hyperplasia, a process of smooth muscle cell re-growth, is the result of a natural wound healing response of the injured artery after stent deployment. Excessive neointimal hyperplasia following coronary artery stenting results in in-stent restenosis (ISR). Regardless of recent developments in the field of coronary stent design, ISR remains a significant complication of this interventional therapy. The influence of stent design parameters such as strut thickness, shape and the depth of strut deployment within the vessel wall on the severity of restenosis has already been highlighted but the detail of this influence is unclear. These factors impact on local haemodynamics and vessel structure and affect the rate of neointima formation. This paper presents the first results of a multi-scale model of ISR. The development of the simulated restenosis as a function of stent deployment depth is compared with an in vivo porcine dataset. Moreover, the influence of strut size and shape is investigated, and the effect of a drug released at the site of injury, by means of a drug-eluting stent, is also examined. A strong correlation between strut thickness and the rate of smooth muscle cell proliferation has been observed. Simulation results also suggest that the growth of the restenotic lesion is strongly dependent on the stent strut cross-sectional profile.
Collapse
Affiliation(s)
- Hannan Tahir
- Computational Science, Faculty of Science , University of Amsterdam , Amsterdam , The Netherlands
| | | | | | | | | | | | | |
Collapse
|