1
|
Han M, Niu X, Xiong G, Ruan C, Chen G, Wu H, Liu Y, Zhu K, Wang G. Isolation, characterization and genomic analysis of the novel Arthrobacter sp. phage SWEP2. Arch Virol 2023; 168:276. [PMID: 37864004 DOI: 10.1007/s00705-023-05898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/01/2023] [Indexed: 10/22/2023]
Abstract
A new virulent phage, SWEP2, infecting the Arthrobacter sp. 5B strain, was isolated from black soil samples in northeastern China. SWEP2 has a latent period of 80 min and a burst size of 45 PFU (evaluated at an MOI of 0.1). Genomic analysis revealed that the 43,398-bp dsDNA genome of phage SWEP2 contains 64 open reading frames (ORFs) and one tRNA gene. Phylogenetic analysis indicated a close relationship between SWEP2 and Arthrobacter phage Liebe, with 82.98% identity and a query coverage of 48%. Based on its distinct phenotypic and genetic characteristics, SWEP2 is identified as a novel Arthrobacter phage.
Collapse
Affiliation(s)
- Miao Han
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xinyao Niu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guangzhou Xiong
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Environmental Microbiology, Eawag, 8600, Dübendorf, Switzerland
| | - Guowei Chen
- School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanqing Wu
- The Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Ying Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kun Zhu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China.
- National Black Soil and Agriculture Research, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Tahon G, Lebbe L, Willems A. Spirosoma utsteinense sp. nov. isolated from Antarctic ice-free soils from the Utsteinen region, East Antarctica. Int J Syst Evol Microbiol 2021; 71. [PMID: 33729126 DOI: 10.1099/ijsem.0.004754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Between 2014 and 2016, 16 Gram-stain-negative, aerobic, rod-shaped and yellow-orange pigmented bacteria were isolated from exposed soils from the Utsteinen region, Sør Rondane Mountains, East Antarctica. Analysis of their 16S rRNA gene sequences revealed that the strains form a separate cluster in the genus Spirosoma, with Spirosoma rigui KCTC 12531T as its closest neighbour (97.8 % sequence similarity). Comparative genome analysis of two representative strains (i.e. R-68523T and R-68079) of the new group with the type strains of Spirosoma rigui (its closest neighbour) and Spirosoma linguale (type species of the genus), yielded average nucleotide identity values of 73.9-78.7 %. Digital DNA-DNA reassociation values of the two strains and these type strains ranged from 20.3 to 22.0 %. The predominant cellular fatty acids of the two novel strains were summed feature 3 (i.e. C16 : 1 ω7c and/or iso-C15 2-OH), C16 : 1 ω5c, C16 : 0 and iso-C15 : 0. The new Spirosoma strains grew with 0-0.5 % (w/v) NaCl, at pH 6.5-8.0 and displayed optimum growth between 15 and 25 °C. Based on the results of phenotypic, genomic, phylogenetic and chemotaxonomic analyses, the new strains represent a novel species of the genus Spirosoma for which the name Spirosoma utsteinense sp. nov. is proposed. The type strain is R-68523T (=LMG 31447T=CECT 9925T).
Collapse
Affiliation(s)
- Guillaume Tahon
- Present address: Laboratory of Microbiology, Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands.,Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
de Faria AF, de Moraes ACM, Alves OL. Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives. Nanotoxicology 2014. [DOI: 10.1007/978-1-4614-8993-1_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Prestel E, Regeard C, Salamitou S, Neveu J, Dubow MS. The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley desert. Antonie van Leeuwenhoek 2013; 103:1329-41. [PMID: 23559041 DOI: 10.1007/s10482-013-9914-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/24/2013] [Indexed: 11/26/2022]
Abstract
Arid zones cover over 30 % of the Earth's continental surface. In order to better understand the role of microbes in this type of harsh environment, we isolated and characterized the bacteriophages from samples of the surface sand of the Mesquite Flats region via electron microscopy and DNA sequencing of a select number of cloned phage DNAs. An electron microscopic analysis of the recovered virus-like particles revealed at least 11 apparently different morphotypes sharing structural characteristics of the Caudoviridae family of tailed phages. We found that 36 % of the sequences contained no significant identity (e-value >10(-3)) with sequences in the databases. Pilot sequencing of cloned 16S rRNA genes identified Bacteroidetes and Proteobacteria as the major bacterial groups present in this severe environment. The majority of the 16S rDNA sequences from the total (uncultured) bacterial population displayed ≤96 % identity to 16S rRNA genes in the database, suggesting an unexplored bacterial population likely adapted to a desert environment. In addition, we also isolated and identified 38 cultivable bacterial strains, the majority of which belonged to the genus Bacillus. Mitomycin-C treatment of the cultivable bacteria demonstrated that the vast majority (84 %) contained at least one SOS-inducible prophage.
Collapse
Affiliation(s)
- Eric Prestel
- Laboratoire de Génomique et Biodiversité Microbienne des Biofilms, Institut de Génétique et Microbiologie; CNRS UMR 8621, Univ Paris-Sud, Bâtiment 409, 91405, Orsay, France
| | | | | | | | | |
Collapse
|