1
|
Erokhina TN, Ryazantsev DY, Zavriev SK, Morozov SY. Biological Activity of Artificial Plant Peptides Corresponding to the Translational Products of Small ORFs in Primary miRNAs and Other Long "Non-Coding" RNAs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1137. [PMID: 38674546 PMCID: PMC11055055 DOI: 10.3390/plants13081137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Generally, lncPEPs (peptides encoded by long non-coding RNAs) have been identified in many plant species of several families and in some animal species. Importantly, molecular mechanisms of the miPEPs (peptides encoded by primary microRNAs, pri-miRNAs) are often poorly understood in different flowering plants. Requirement for the additional studies in these directions is highlighted by alternative findings concerning positive regulation of pri-miRNA/miRNA expression by synthetic miPEPs in plants. Further extensive studies are also needed to understand the full set of their roles in eukaryotic organisms. This review mainly aims to consider the available data on the regulatory functions of the synthetic miPEPs. Studies of chemically synthesized miPEPs and analyzing the fine molecular mechanisms of their functional activities are reviewed. Brief description of the studies to identify lncORFs (open reading frames of long non-coding RNAs) and the encoded protein products is also provided.
Collapse
Affiliation(s)
- T. N. Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (S.K.Z.)
| | - D. Y. Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (S.K.Z.)
| | - S. K. Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (S.K.Z.)
| | - S. Y. Morozov
- Biological Faculty, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Patnaik A, Alavilli H, Rath J, Panigrahi KCS, Panigrahy M. Variations in Circadian Clock Organization & Function: A Journey from Ancient to Recent. PLANTA 2022; 256:91. [PMID: 36173529 DOI: 10.1007/s00425-022-04002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Circadian clock components exhibit structural variations in different plant systems, and functional variations during various abiotic stresses. These variations bear relevance for plant fitness and could be important evolutionarily. All organisms on earth have the innate ability to measure time as diurnal rhythms that occur due to the earth's rotations in a 24-h cycle. Circadian oscillations arising from the circadian clock abide by its fundamental properties of periodicity, entrainment, temperature compensation, and oscillator mechanism, which is central to its function. Despite the fact that a myriad of research in Arabidopsis thaliana illuminated many detailed aspects of the circadian clock, many more variations in clock components' organizations and functions remain to get deciphered. These variations are crucial for sustainability and adaptation in different plant systems in the varied environmental conditions in which they grow. Together with these variations, circadian clock functions differ drastically even during various abiotic and biotic stress conditions. The present review discusses variations in the organization of clock components and their role in different plant systems and abiotic stresses. We briefly introduce the clock components, entrainment, and rhythmicity, followed by the variants of the circadian clock in different plant types, starting from lower non-flowering plants, marine plants, dicots to the monocot crop plants. Furthermore, we discuss the interaction of the circadian clock with components of various abiotic stress pathways, such as temperature, light, water stress, salinity, and nutrient deficiency with implications for the reprogramming during these stresses. We also update on recent advances in clock regulations due to post-transcriptional, post-translation, non-coding, and micro-RNAs. Finally, we end this review by summarizing the points of applicability, a remark on the future perspectives, and the experiments that could clear major enigmas in this area of research.
Collapse
Affiliation(s)
- Alena Patnaik
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul, 05006, South Korea
| | - Jnanendra Rath
- Institute of Science, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India
| | - Madhusmita Panigrahy
- School of Biological Sciences, National Institute of Science Education and Research, Jatni, Odisha, 752050, India.
| |
Collapse
|
3
|
Wang HLV, Chekanova JA. An Overview of Methodologies in Studying lncRNAs in the High-Throughput Era: When Acronyms ATTACK! Methods Mol Biol 2019; 1933:1-30. [PMID: 30945176 PMCID: PMC6684206 DOI: 10.1007/978-1-4939-9045-0_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of pervasive transcription in eukaryotic genomes provided one of many surprising (and perhaps most surprising) findings of the genomic era and led to the uncovering of a large number of previously unstudied transcriptional events. This pervasive transcription leads to the production of large numbers of noncoding RNAs (ncRNAs) and thus opened the window to study these diverse, abundant transcripts of unclear relevance and unknown function. Since that discovery, recent advances in high-throughput sequencing technologies have identified a large collection of ncRNAs, from microRNAs to long noncoding RNAs (lncRNAs). Subsequent discoveries have shown that many lncRNAs play important roles in various eukaryotic processes; these discoveries have profoundly altered our understanding of the regulation of eukaryotic gene expression. Although the identification of ncRNAs has become a standard experimental approach, the functional characterization of these diverse ncRNAs remains a major challenge. In this chapter, we highlight recent progress in the methods to identify lncRNAs and the techniques to study the molecular function of these lncRNAs and the application of these techniques to the study of plant lncRNAs.
Collapse
Affiliation(s)
- Hsiao-Lin V Wang
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China
- Present address: Department of Biology, Emory University, Atlanta, GA, USA
| | - Julia A Chekanova
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Yamada M. Functions of long intergenic non-coding (linc) RNAs in plants. JOURNAL OF PLANT RESEARCH 2017; 130:67-73. [PMID: 27999969 DOI: 10.1007/s10265-016-0894-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/28/2016] [Indexed: 05/08/2023]
Abstract
Whole transcriptome analyses in many organisms have revealed that most transcribed RNAs do not encode proteins. These non-coding RNAs likely contribute to the regulation of gene expression during the development of multicellular organisms. In eukaryotes, the roles of small RNAs, one class of non-coding RNAs, in transcriptional and post-transcriptional regulation have been well characterized. However, the functions of a second class of non-coding RNAs, long intergenic noncoding (linc) RNAs, are relatively unknown, especially in plants. Recent advances in RNA-seq and tiling microarray technologies have revealed the presence of many lincRNAs across plant species. This review focuses on the functions of lincRNAs that have been recently reported in plants. One of the most well characterized functions of lincRNAs is to epigenetically regulate gene expression by recruiting proteins for chromosome modification to specific loci. Second, lincRNAs are known to inhibit the physical interaction between microRNAs (miRNAs) and their target mRNAs thus controling protein levels of the target mRNAs. Lastly, lincRNAs control alternative splicing by binding and sequestering the proteins required for alternative splicing.
Collapse
Affiliation(s)
- Masashi Yamada
- Department of Biology and HHMI, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Hernando CE, Romanowski A, Yanovsky MJ. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:84-94. [PMID: 27412912 DOI: 10.1016/j.bbagrm.2016.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/16/2022]
Abstract
The circadian clock drives rhythms in multiple physiological processes allowing plants to anticipate and adjust to periodic changes in environmental conditions. These physiological rhythms are associated with robust oscillations in the expression of thousands of genes linked to the control of photosynthesis, cell elongation, biotic and abiotic stress responses, developmental processes such as flowering, and the clock itself. Given its pervasive effects on plant physiology, it is not surprising that circadian clock genes have played an important role in the domestication of crop plants and in the improvement of crop productivity. Therefore, identifying the principles governing the dynamics of the circadian gene regulatory network in plants could strongly contribute to further speed up crop improvement. Here we provide an historical as well as a current description of our knowledge of the molecular mechanisms underlying circadian rhythms in plants. This work focuses on the transcriptional and post-transcriptional regulatory layers that control the very core of the circadian clock, and some of its complex interactions with signaling pathways that help synchronize plant growth and development to daily and seasonal changes in the environment. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- C Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| | - Andrés Romanowski
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Av. Patricias Argentinas 435, C1405BWE Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
6
|
Novel drought-responsive regulatory coding and non-coding transcripts from Oryza Sativa L. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0439-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Britto-Kido SDA, Ferreira Neto JRC, Pandolfi V, Marcelino-Guimarães FC, Nepomuceno AL, Vilela Abdelnoor R, Benko-Iseppon AM, Kido EA. Natural antisense transcripts in plants: a review and identification in soybean infected with Phakopsora pachyrhizi SuperSAGE library. ScientificWorldJournal 2013; 2013:219798. [PMID: 23878522 PMCID: PMC3710604 DOI: 10.1155/2013/219798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/05/2013] [Indexed: 11/23/2022] Open
Abstract
Natural antisense ranscripts (NAT) are RNA molecules complementary to other endogenous RNAs. They are capable of regulating the expression of target genes at different levels (transcription, mRNA stability, translation, etc.). Such a property makes them ideal for interventions in organisms' metabolism. The present study reviewed plant NAT aspects, including features, availability and genesis, conservation and distribution, coding capacity, NAT pair expression, and functions. Besides, an in silico identification of NATs pairs was presented, using deepSuperSAGE libraries of soybean infected or not with Phakopsora pachyrhizi. Results showed that around 1/3 of the 77,903 predicted trans-NATs (by PlantsNATsDB database) detected had unitags mapped in both sequences of each pair. The same 1/3 of the 436 foreseen cis-NATs showed unitags anchored in both sequences of the related pairs. For those unitags mapped in NAT pairs, a modulation expression was assigned as upregulated, downregulated, or constitutive, based on the statistical analysis (P < 0.05). As a result, the infected treatment promoted the expression of 2,313 trans-NATs pairs comprising unitags exclusively from that library (1,326 pairs had unitags only found in the mock library). To understand the regulation of these NAT pairs could be a key aspect in the ASR plant response.
Collapse
Affiliation(s)
| | | | - Valesca Pandolfi
- Federal University of Pernambuco (UFPE), Department of Genetics, Recife, PE, Brazil
| | | | - Alexandre Lima Nepomuceno
- Embrapa Soybean, Rod. Carlos João Strass, Distrito de Warta, Caixa Postal 231, 86.001-970 Londrina, PR, Brazil
| | - Ricardo Vilela Abdelnoor
- Embrapa Soybean, Rod. Carlos João Strass, Distrito de Warta, Caixa Postal 231, 86.001-970 Londrina, PR, Brazil
| | | | - Ederson Akio Kido
- Federal University of Pernambuco (UFPE), Department of Genetics, Recife, PE, Brazil
| |
Collapse
|
8
|
Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 2011; 147:1537-50. [PMID: 22196729 PMCID: PMC3376356 DOI: 10.1016/j.cell.2011.11.055] [Citation(s) in RCA: 934] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/05/2011] [Accepted: 11/18/2011] [Indexed: 02/07/2023]
Abstract
Thousands of long intervening noncoding RNAs (lincRNAs) have been identified in mammals. To better understand the evolution and functions of these enigmatic RNAs, we used chromatin marks, poly(A)-site mapping and RNA-Seq data to identify more than 550 distinct lincRNAs in zebrafish. Although these shared many characteristics with mammalian lincRNAs, only 29 had detectable sequence similarity with putative mammalian orthologs, typically restricted to a single short region of high conservation. Other lincRNAs had conserved genomic locations without detectable sequence conservation. Antisense reagents targeting conserved regions of two zebrafish lincRNAs caused developmental defects. Reagents targeting splice sites caused the same defects and were rescued by adding either the mature lincRNA or its human or mouse ortholog. Our study provides a roadmap for identification and analysis of lincRNAs in model organisms and shows that lincRNAs play crucial biological roles during embryonic development with functionality conserved despite limited sequence conservation.
Collapse
Affiliation(s)
- Igor Ulitsky
- Whitehead Institute for Biomedical Research, Cambridge,
Massachusetts 02142, USA
- Howard Hughes Medical Institute
- Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
| | - Alena Shkumatava
- Whitehead Institute for Biomedical Research, Cambridge,
Massachusetts 02142, USA
- Howard Hughes Medical Institute
- Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
| | - Calvin H. Jan
- Whitehead Institute for Biomedical Research, Cambridge,
Massachusetts 02142, USA
- Howard Hughes Medical Institute
- Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge,
Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
| | - David P. Bartel
- Whitehead Institute for Biomedical Research, Cambridge,
Massachusetts 02142, USA
- Howard Hughes Medical Institute
- Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
| |
Collapse
|