1
|
Garcia-Gonzalez N, Prete R, Perugini M, Merola C, Battista N, Corsetti A. Probiotic antigenotoxic activity as a DNA bioprotective tool: a minireview with focus on endocrine disruptors. FEMS Microbiol Lett 2020; 367:fnaa041. [PMID: 32124914 PMCID: PMC7082702 DOI: 10.1093/femsle/fnaa041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
Nowadays, the interest in the role of dietary components able to influence the composition and the activity of the intestinal microbiota and, consequently, to modulate the risk of genotoxicity and colon cancer is increasing in the scientific community. Within this topic, the microbial ability to have a protective role at gastrointestinal level by counteracting the biological activity of genotoxic compounds, and thus preventing the DNA damage, is deemed important in reducing gut pathologies and is considered a new tool for probiotics and functional foods. A variety of genotoxic compounds can be found in the gut and, besides food-related mutagens and other DNA-reacting compounds, there is a group of pollutants commonly used in food packaging and/or in thousands of everyday products called endocrine disruptors (EDs). EDs are exogenous substances that alter the functions of the endocrine system through estrogenic and anti-estrogenic activity, which interfere with normal hormonal function in human and wildlife. Thus, this paper summarizes the main applications of probiotics, mainly lactobacilli, as a bio-protective tool to counteract genotoxic and mutagenic agents, by biologically inhibiting the related DNA damage in the gut and highlights the emerging perspectives to enlarge and further investigate the microbial bio-protective role at intestinal level.
Collapse
Affiliation(s)
- Natalia Garcia-Gonzalez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Natalia Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
2
|
Roubicek DA, Rech CM, Umbuzeiro GA. Mutagenicity as a parameter in surface water monitoring programs-opportunity for water quality improvement. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:200-211. [PMID: 31294883 DOI: 10.1002/em.22316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/30/2019] [Accepted: 07/05/2019] [Indexed: 06/09/2023]
Abstract
Effect-based analyses are being recognized as excellent tools to a comprehensive and reliable water quality evaluation to complement physical and chemical parameters. The Salmonella/microsome mutagenicity test was introduced in the São Paulo State water quality-monitoring program in 1999 and waters from 104 sites used to the production of drinking water were analyzed. Samples were tested after organic extraction, using the microsuspension version of the Salmonella/microsome assay with strains TA98 and TA100 with and without S9-mammalian metabolic system. Of the 1720 water samples analyzed in 20 years, 20% were positive; TA98 was the most sensitive strain, detecting alone 99%. Results were presented in hazard categories to facilitate water managers' understanding and general public communication. Hot spots of mutagenicity were identified, and pollution sources investigated. A flow scheme with instructions of how to proceed in case of mutagenic samples was developed and implemented in the monitoring program. Enforcement actions were taken to reduce exposure of humans and aquatic biota to mutagenic compounds. The results presented provide scientific basis for the incorporation of the Salmonella/microsome assay in a regulatory framework, and to guide water-quality managers. The inclusion of a mutagenicity assay using standardized conditions proved to be an opportunity to improve the quality of water, and the strategy presented here could be applied by any environmental agency around the world. Environ. Mol. Mutagen. 61:200-211, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Célia M Rech
- São Paulo State Environmental Agency, CETESB, São Paulo, SP, Brazil
| | - Gisela A Umbuzeiro
- School of Technology, University of Campinas, UNICAMP, Limeira, SP, Brazil
| |
Collapse
|
3
|
Maselli BS, Giron MCG, Lim H, Bergvall C, Westerholm R, Dreij K, Watanabe T, Cardoso AA, Umbuzeiro GA, Kummrow F. Comparative mutagenic activity of atmospheric particulate matter from limeira, stockholm, and kyoto. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:607-616. [PMID: 30968449 DOI: 10.1002/em.22293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric particulate matter (PM) organic fractions from urban centers are frequently mutagenic for the Salmonella/microsome assay. This mutagenicity is related to both primary and secondary pollutants, and meteorological conditions have great influence on the secondary pollutant's formation. Our objective was to compare the mutagenicity of atmospheric total suspended particulates (TSP) from three cities with marked different meteorological conditions and TSP concentrations: Limeira (Brazil) with 99.0 μg/m3 , Stockholm (Sweden) with 6.2 μg/m3 , and Kyoto (Japan) with 28.0 μg/m3 . For comparison, we used the same batch of filters, sample extraction method, and Salmonella/microsome testing protocol with 11 strains of Salmonella with and without metabolic activation. Samples were collected during winter and pooled into one single extract representing each city. All samples were mutagenic for all tested strains, except for TA102. Based on the strain's selectivity, nitroarenes, polycyclic aromatic hydrocarbons, and aromatic amines play a predominant role in the mutagenicity of these samples. The mutagenic potencies expressed by mass of extracted organic material (EOM; revertants/μg EOM) were similar (~twofold difference) among the cities, despite differences in meteorological conditions and pollution sources. In contrast, the mutagenic potencies expressed by air volume (rev/m3 ) varied ~20-fold, with Limeira > Kyoto ≈ Stockholm. These results are the first systematic assessment of air mutagenicity from cities on three continents using the same protocols. The results confirm that the mutagenic potency expressed by EOM mass is similar regardless of continent of origin, whereas the mutagenic potency expressed by air volume can vary by orders of magnitude. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Macelle C G Giron
- School of Technology, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Hwanmi Lim
- Unit of Analytical Chemistry, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Christoffer Bergvall
- Unit of Analytical Chemistry, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Roger Westerholm
- Unit of Analytical Chemistry, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Arnaldo A Cardoso
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gisela A Umbuzeiro
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- School of Technology, State University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Fábio Kummrow
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
4
|
Umbuzeiro GDA, Heringa M, Zeiger E. In Vitro Genotoxicity Testing: Significance and Use in Environmental Monitoring. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 157:59-80. [PMID: 27631084 DOI: 10.1007/10_2015_5018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
There is ongoing concern about the consequences of mutations in humans and biota arising from environmental exposures to industrial and other chemicals. Genetic toxicity tests have been used to analyze chemicals, foods, drugs, and environmental matrices such as air, water, soil, and wastewaters. This is because the mutagenicity of a substance is highly correlated with its carcinogenicity. However, no less important are the germ cell mutations, because the adverse outcome is related not only to an individual but also to population levels. For environmental analysis the most common choices are in vitro assays, and among them the most widely used is the Ames test (Salmonella/microsome assay). There are several protocols and methodological approaches to be applied when environmental samples are tested and these are discussed in this chapter, along with the meaning and relevance of the obtained responses. Two case studies illustrate the utility of in vitro mutagenicity tests such as the Ames test. It is clear that, although it is not possible to use the outcome of the test directly in risk assessment, the application of the assays provides a great opportunity to monitor the exposure of humans and biota to mutagenic substances for the purpose of reducing or quantifying that exposure.
Collapse
Affiliation(s)
| | - Minne Heringa
- National Institute of Public Health and the Environment (RIVM), 1, 3720 BA, Bilthoven, The Netherlands
| | - Errol Zeiger
- Errol Zeiger Consulting, 800 Indian Springs Road, Chapel Hill, NC, 27514, USA
| |
Collapse
|
5
|
Muz M, Krauss M, Kutsarova S, Schulze T, Brack W. Mutagenicity in Surface Waters: Synergistic Effects of Carboline Alkaloids and Aromatic Amines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1830-1839. [PMID: 28045503 DOI: 10.1021/acs.est.6b05468] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For decades, mutagenicity has been observed in many surface waters with a possible link to the presence of aromatic amines. River Rhine is a well-known example of this phenomenon but responsible compound(s) are still unknown. To identify the mutagenic compounds, we applied effect-directed analysis (EDA) utilizing novel analytical and biological approaches to a water sample extract from the lower Rhine. We could identify 21 environmental contaminants including two weakly mutagenic aromatic amines, and the known alkaloid comutagen norharman along with two related β-carboline alkaloids, carboline, and 5-carboline, which were reported the first time in surface waters. Results of mixture tests showed a strong synergism of the identified aromatic amines not only with norharman, but also with carboline and 5-carboline. Additionally, other nitrogen-containing compounds also contributed to the mutagenicity when aromatic amines were present. Thus, comutagenicity of β-carboline alkaloids with aromatic amines is shown to occur in surface waters. These results strongly suggest that surface water mutagenicity is highly complex and driven by synergistic mechanisms of a complex compound mixture (of which many are yet unidentified) rather than by single compounds. Therefore, mixture effects should be considered not only from mutagens alone, but also including possible comutagens and nonmutagenic compounds.
Collapse
Affiliation(s)
- Melis Muz
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University , Department of Ecosystem Analyses, Institute for Environmental Research,Worringerweg 1, 52074 Aachen, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
| | - Stela Kutsarova
- Laboratory of Mathematical Chemistry, University "Prof. Assen Zlatarov" , 1 Yakimov Street, 8010 Bourgas, Bulgaria
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University , Department of Ecosystem Analyses, Institute for Environmental Research,Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
6
|
Alves DKM, Kummrow F, Cardoso AA, Morales DA, Umbuzeiro GA. Mutagenicity profile of atmospheric particulate matter in a small urban center subjected to airborne emission from vehicle traffic and sugar cane burning. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:41-50. [PMID: 26289646 DOI: 10.1002/em.21970] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 06/04/2023]
Abstract
Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Debora Kristina M Alves
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Arnaldo A Cardoso
- Analytical Chemistry Department, Paulista State University (UNESP), Araraquara, São Paulo, Brazil
| | - Daniel A Morales
- School of Technology, State University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Gisela A Umbuzeiro
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, São Paulo, Brazil
- School of Technology, State University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| |
Collapse
|
7
|
Umbuzeiro GA, Kummrow F, Morales DA, Alves DKM, Lim H, Jarvis IWH, Bergvall C, Westerholm R, Stenius U, Dreij K. Sensitivity of Salmonella YG5161 for detecting PAH-associated mutagenicity in air particulate matter. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:510-517. [PMID: 24578285 DOI: 10.1002/em.21861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
The Salmonella/microsome assay is the most used assay for the evaluation of air particulate matter (PM) mutagenicity and a positive correlation between strain TA98 responses and benzo[a]pyrene (B[a]P) levels in PM has been found. However, it seems that the major causes of PM mutagenicity in this assay are the nitro and oxy-PAHs. Salmonella YG5161, a 30-times more responsive strain to B[a]P has been developed. To verify if YG5161 strain was sufficiently sensitive to detect mutagenicity associated with B[a]P mutagenicity, PM samples were collected in Brazil and Sweden, extracted with toluene and tested in the Salmonella/microsome microsuspension assay. PAHs and B[a]P were determined and the extracts were tested with YG5161 and its parental strain TA1538. The extracts were also tested with YG1041 and its parental strain TA98. For sensitivity comparisons, we tested B[a]P and 1-nitropyrene (1-NP) using the same conditions. The minimal effective dose of B[a]P was 155 ng/plate for TA1538 and 7 ng/plate for YG5161. Although the maximum tested dose, 10 m(3) /plate containing 9 ng of B[a]P in the case of Brazilian sample, was sufficient to elicit a response in YG5161, mutagenicity was detected at a dose as low as 1 m(3) /plate (0.9 ng). This is probably caused by nitro-compounds that have been shown to be even more potent than B[a]P for YG5161. It seems that the mutagenicity of B[a]P present in PM is not detectable even with the use of YG5161 unless more efficient separation to remove the nitro-compounds from the PAH extract is performed.
Collapse
Affiliation(s)
- Gisela A Umbuzeiro
- Faculty of Technology, State University of Campinas (Unicamp), Limeira, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|