1
|
Agbodjato NA, Babalola OO. Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops. PeerJ 2024; 12:e16836. [PMID: 38638155 PMCID: PMC11025545 DOI: 10.7717/peerj.16836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/04/2024] [Indexed: 04/20/2024] Open
Abstract
Maize and cowpea are among the staple foods most consumed by most of the African population, and are of significant importance in food security, crop diversification, biodiversity preservation, and livelihoods. In order to satisfy the growing demand for agricultural products, fertilizers and pesticides have been extensively used to increase yields and protect plants against pathogens. However, the excessive use of these chemicals has harmful consequences on the environment and also on public health. These include soil acidification, loss of biodiversity, groundwater pollution, reduced soil fertility, contamination of crops by heavy metals, etc. Therefore, essential to find alternatives to promote sustainable agriculture and ensure the food and well-being of the people. Among these alternatives, agricultural techniques that offer sustainable, environmentally friendly solutions that reduce or eliminate the excessive use of agricultural inputs are increasingly attracting the attention of researchers. One such alternative is the use of beneficial soil microorganisms such as plant growth-promoting rhizobacteria (PGPR). PGPR provides a variety of ecological services and can play an essential role as crop yield enhancers and biological control agents. They can promote root development in plants, increasing their capacity to absorb water and nutrients from the soil, increase stress tolerance, reduce disease and promote root development. Previous research has highlighted the benefits of using PGPRs to increase agricultural productivity. A thorough understanding of the mechanisms of action of PGPRs and their exploitation as biofertilizers would present a promising prospect for increasing agricultural production, particularly in maize and cowpea, and for ensuring sustainable and prosperous agriculture, while contributing to food security and reducing the impact of chemical fertilizers and pesticides on the environment. Looking ahead, PGPR research should continue to deepen our understanding of these microorganisms and their impact on crops, with a view to constantly improving sustainable agricultural practices. On the other hand, farmers and agricultural industry players need to be made aware of the benefits of PGPRs and encouraged to adopt them to promote sustainable agricultural practices.
Collapse
Affiliation(s)
- Nadège Adoukè Agbodjato
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
- Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM), Département de Biochimie et de Biologie Cellulaire, Université d’Abomey-Calavi, Calavi, Benin
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, North West, South Africa
| |
Collapse
|
2
|
Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC. Towards circular economy: Potential of microalgae - bacterial-based biofertilizer on plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119445. [PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
Collapse
Affiliation(s)
- Zheng Yang Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aaronn Avit Ajeng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wai Yan Cheah
- Centre for Research in Development, Social and Environment (SEEDS) Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Tariq MR, Shaheen F, Mustafa S, ALI S, Fatima A, Shafiq M, Safdar W, Sheas MN, Hameed A, Nasir MA. Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. PeerJ 2022; 10:e13782. [PMID: 35996668 PMCID: PMC9392447 DOI: 10.7717/peerj.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/05/2022] [Indexed: 01/17/2023] Open
Abstract
The current research project involves isolation and characterization of PSM (phosphate solubilizing microorganisms) from the rhizospheric soil of certain medicinal plants and to determine their effect on plant growth. Medicinal plants, Aloe vera, Bauhinia variegata, Cannabis sativa, Lantana camara and Mentha viridis were selected for the isolation of PSMs. Soil status of the selected medicinal plants was also checked. Phosphate solubilizing bacteria (PSB) were observed under stereomicroscope for their morphological characteristics and Gram's staining. Phosphate solubilizing fungi (PSF) were also identified microscopically. Colony diameter, halo zone diameter and solubilization index were determined on PVK agar plates. TLC results indicated that citric acid was the most common acid produced by PSM strains. All strains were found to be non-pathogenic in pathogenicity test. A positive plant growth response to PSM inoculation was observed in all studies. In study 1, individual inoculation of PSM showed a significant increased effect on plant growth parameter i.e., fresh and dry weight, plant height and root and shoot length as compared to control. In study2, composite inoculation of PSM along with different P sources revealed that rock phosphate (RP) with PSM increased growth of plants significantly. The present study suggests that PSM inoculation along with RP amendment can be used as biofertilizer.
Collapse
Affiliation(s)
| | - Fouzia Shaheen
- Faisalabad Medical University, Faisalabad, Punjab, Pakistan
| | | | - Sajid ALI
- Department of Agronomy, University of the Punjab, Lahore, Punjab, Pakistan
| | - Ammara Fatima
- Lahore College for Women University, Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, University of the Punjab, Lahore, Punjab, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Muhammad Naveed Sheas
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Federal, Pakistan
| | - Amna Hameed
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Federal, Pakistan
| | - Muhammad Adnan Nasir
- Department of Diet and Nutritional Sciecnes, University of Lahore, Gujrat, Punjab, Pakistan
| |
Collapse
|
4
|
Boubekri K, Soumare A, Mardad I, Lyamlouli K, Ouhdouch Y, Hafidi M, Kouisni L. Multifunctional role of Actinobacteria in agricultural production sustainability: a review. Microbiol Res 2022; 261:127059. [DOI: 10.1016/j.micres.2022.127059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 05/01/2022] [Indexed: 12/13/2022]
|
5
|
Kumar A, Danish Yaseen Naqvi S, Kaushik P, Khojah E, Amir M, Alam P, Samra BN. Rhizophagus irregularis and Nitrogen Fixing Azotobacter Enhances Greater Yam (Dioscorea alata) Biochemical Profile and Upholds Yield under Reduced Fertilization. Saudi J Biol Sci 2022; 29:3694-3703. [PMID: 35844423 PMCID: PMC9280223 DOI: 10.1016/j.sjbs.2022.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 01/14/2023] Open
Abstract
Greater yam (Dioscorea alata L.) is a tropical plant with a large food reserve in its underground tubers. Cultivating the greater yam is considered an essential food security crop. Yam tuber yield and quality is decreased by poor soil fertility, heavy use of fertilizers and attack of insect pest. The heavy use of fertilizers impaired the soil structure polluted the environment, and adversely impacted human beings. We employed Rhizophagus irregularis (Arbuscular Mycorrhiza Fungus) and nitrogen fixing Azotobacter to help reduce the adverse effects of fertilisers on the plants. In this study, we applied five treatments such as (1) CF: normal with conventional package and practices, (2) 70%CF: 70% chemical fertilizer, (3) 70 %CF + RI: 70% CF + AMF (R. irregularis), (4) 70%CF + AC: 70% CF + PGPB (Azotobacter chroococum), and (5) 70%CF + RI + AC: 70% CF + R. irregularis + Azotobacter chroococum, as donated as T1, T2, T3, T4 and T5, obtained that 70%CF + RI + AC was found to be the most efficient treatment under reduce chemical fertilization for improving morphological traits and biochemical content of greater yam. Although some other treatments such as 70%CF + AC, 70%CF + RI, 70% CF and CF demonstrated considerable effects in yam compared with 70%CF: 70% chemical fertilizer.
Collapse
Affiliation(s)
- Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur 208002, India
| | | | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
- Corresponding author.
| | - Ebtihal Khojah
- Department of Food Science and Nutration, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohd Amir
- Department of Natural Product & Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Pravej Alam
- Department of Biology College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), 11942 Alkharj, Kingdom of Saudi Arabia
| | - Bassem N. Samra
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
6
|
Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Jebara M. Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 2018; 58:579-589. [DOI: 10.1002/jobm.201700626] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Souhir Abdelkrim
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
- National Agronomic Institute of Tunisia; University of Carthage; Tunis Tunisia
| | - Salwa H. Jebara
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Omar Saadani
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Manel Chiboub
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Ghassen Abid
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Moez Jebara
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| |
Collapse
|
7
|
Jose VLL, Suzana CSM, Katia ADS, Marcos AS, Claudia MM. Characterization of actinobacteria from the semiarid region, and their antagonistic effect on strains of rhizobia. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajb2016.15724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Prashar P, Kapoor N, Sachdeva S. Rhizosphere: its structure, bacterial diversity and significance. REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2014; 13:63-77. [PMID: 0 DOI: 10.1007/s11157-013-9317-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|