1
|
Tynyakov J, Bentov S, Abehsera S, Yehezkel G, Roth Z, Khalaila I, Weil S, Berman A, Plaschkes I, Tom M, Aflalo ED, Sagi A. A crayfish molar tooth protein with putative mineralized exoskeletal chitinous matrix properties. ACTA ACUST UNITED AC 2015; 218:3487-98. [PMID: 26385331 DOI: 10.1242/jeb.123539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023]
Abstract
Some crustaceans possess exoskeletons that are reinforced with calcium carbonate. In the crayfish Cherax quadricarinatus, the molar tooth, which is part of the mandibular exoskeleton, contains an unusual crystalline enamel-like apatite layer. As this layer resembles vertebrate enamel in composition and function, it offers an interesting example of convergent evolution. Unlike other parts of the crayfish exoskeleton, which is periodically shed and regenerated during the molt cycle, molar mineral deposition takes place during the pre-molt stage. The molar mineral composition transforms continuously from fluorapatite through amorphous calcium phosphate to amorphous calcium carbonate and is mounted on chitin. The process of crayfish molar formation is entirely extracellular and presumably controlled by proteins, lipids, polysaccharides, low-molecular weight molecules and calcium salts. We have identified a novel molar protein termed Cq-M15 from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. Its transcript and differential expression were confirmed by a next-generation sequencing library. The predicted acidic pI of Cq-M15 suggests its possible involvement in mineral arrangement. Cq-M15 is expressed in several exoskeletal tissues at pre-molt and its silencing is lethal. Like other arthropod cuticular proteins, Cq-M15 possesses a chitin-binding Rebers-Riddiford domain, with a recombinant version of the protein found to bind chitin. Cq-M15 was also found to interact with calcium ions in a concentration-dependent manner. This latter property might make Cq-M15 useful for bone and dental regenerative efforts. We suggest that, in the molar tooth, this protein might be involved in calcium phosphate and/or carbonate precipitation.
Collapse
Affiliation(s)
- Jenny Tynyakov
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Shmuel Bentov
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Shai Abehsera
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Ziv Roth
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Isam Khalaila
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Amir Berman
- Department of Biotechnology Engineering, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Inbar Plaschkes
- National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Moshe Tom
- Israel Oceanographic and Limnological Research, Haifa 8511911, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel National Institute for Biotechnology in the Negev, Ben-Gurion University, PO Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
2
|
A novel chitin binding crayfish molar tooth protein with elasticity properties. PLoS One 2015; 10:e0127871. [PMID: 26010981 PMCID: PMC4444123 DOI: 10.1371/journal.pone.0127871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/21/2015] [Indexed: 12/04/2022] Open
Abstract
The molar tooth of the crayfish Cherax quadricarinatus is part of the mandible, and is covered by a layer of apatite (calcium phosphate). This tooth sheds and is regenerated during each molting cycle together with the rest of the exoskeleton. We discovered that molar calcification occurs at the pre-molt stage, unlike calcification of the rest of the new exoskeleton. We further identified a novel molar protein from C. quadricarinatus and cloned its transcript from the molar-forming epithelium. We termed this protein Cq-M13. The temporal level of transcription of Cq-M13 in an NGS library of molar-forming epithelium at different molt stages coincides with the assembly and mineralization pattern of the molar tooth. The predicted protein was found to be related to the pro-resilin family of cuticular proteins. Functionally, in vivo silencing of the transcript caused molt cycle delay and a recombinant version of the protein was found to bind chitin and exhibited elastic properties.
Collapse
|
3
|
Grunenfelder LK, Herrera S, Kisailus D. Crustacean-derived biomimetic components and nanostructured composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:3207-3232. [PMID: 24833136 DOI: 10.1002/smll.201400559] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/12/2014] [Indexed: 06/03/2023]
Abstract
Over millions of years, the crustacean exoskeleton has evolved into a rigid, tough, and complex cuticle that is used for structural support, mobility, protection of vital organs, and defense against predation. The crustacean cuticle is characterized by a hierarchically arranged chitin fiber scaffold, mineralized predominately by calcium carbonate and/or calcium phosphate. The structural organization of the mineral and organic within the cuticle occurs over multiple length scales, resulting in a strong and tough biological composite. Here, the ultrastructural details observed in three species of crustacean are reviewed: the American lobster (Homarus americanus), the edible crab (Cancer pagurus), and the peacock mantis shrimp (Odontodactylus scyllarus). The Review concludes with a discussion of recent advances in the development of biomimetics with controlled organic scaffolding, mineralization, and the construction of nanoscale composites, inspired by the organization and formation of the crustacean cuticle.
Collapse
Affiliation(s)
- Lessa Kay Grunenfelder
- Department of Chemical and Environmental Engineering, Bourns Hall B357, Rvierside, CA, 92521, USA
| | | | | |
Collapse
|
4
|
Jonker JL, von Byern J, Flammang P, Klepal W, Power AM. Unusual adhesive production system in the barnacle Lepas anatifera: an ultrastructural and histochemical investigation. J Morphol 2012; 273:1377-91. [PMID: 22911953 DOI: 10.1002/jmor.20067] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/30/2012] [Accepted: 06/21/2012] [Indexed: 11/11/2022]
Abstract
Adhesives that are naturally produced by marine organisms are potential sources of inspiration in the search for medical adhesives. Investigations of barnacle adhesives are at an early stage but it is becoming obvious that barnacles utilize a unique adhesive system compared to other marine organisms. The current study examined the fine structure and chemistry of the glandular system that produces the adhesive of the barnacle Lepas anatifera. All components for the glue originated from large single-cell glands (70-180 μm). Staining (including immunostaining) showed that L-3,4-dihydroxyphenylalanine and phosphoserine were not present in the glue producing tissues, demonstrating that the molecular adhesion of barnacles differs from all other permanently gluing marine animals studied to date. The glandular tissue and adhesive secretion primarily consisted of slightly acidic proteins but also included some carbohydrate. Adhesive proteins were stored in cytoplasmic granules adjacent to an intracellular drainage canal (ICC); observations implicated both merocrine and apocrine mechanisms in the transport of the secretion from the cell cytoplasm to the ICC. Inside the ICC, the secretion was no longer contained within granules but was a flocculent material which became "clumped" as it traveled through the canal network. Hemocytes were not seen within the adhesive "apparatus" (comprising of the glue producing cells and drainage canals), nor was there any structural mechanism by which additions such as hemocytes could be made to the secretion. The unicellular adhesive gland in barnacles is distinct from multicellular adhesive systems observed in marine animals such as mussels and tubeworms. Because the various components are not physically separated in the apparatus, the barnacle adhesive system appears to utilize completely different and unknown mechanisms for maintaining the liquid state of the glue within the body, as well as unidentified mechanisms for the conversion of extruded glue into hard cement.
Collapse
Affiliation(s)
- Jaimie-Leigh Jonker
- Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences Zoology, National University of Ireland, Galway, Galway, Ireland.
| | | | | | | | | |
Collapse
|