1
|
Lu X, Zhou Y, Meng J, Jiang L, Gao J, Cheng Y, Yan H, Wang Y, Zhang B, Li X, Yan F. RNA processing genes characterize RNA splicing and further stratify colorectal cancer. Cell Prolif 2020; 53:e12861. [PMID: 32596958 PMCID: PMC7445406 DOI: 10.1111/cpr.12861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives Due to the limited evaluation of the prognostic value of RNA processing genes (RPGs), which are regulators of alternative splicing events (ASEs) that have been shown to be associated with tumour progression, this study sought to determine whether colorectal cancer (CRC) could be further stratified based on the expression pattern of RPGs. Materials and Methods The gene expression profiles of CRCs were collected from TCGA (training set) and three external validation cohorts, representing 1060 cases totally. Cox regression with least absolute shrinkage and selection operator (LASSO) penalty was used to develop an RNA processing gene index (RPGI) risk score. Kaplan‐Meier curves, multivariate Cox regression and restricted mean survival (RMS) analyses were harnessed to evaluate the prognostic value of the RPGI. Results A 22‐gene RPGI signature was developed, and its risk score served as a strong independent prognostic factor across all data sets when adjusted for major clinical variables. Moreover, ASEs for certain genes, such as FGFR1 and the RAS oncogene family, were significantly correlated with RPGI. Expression levels of genes involved in splicing‐ and tumour‐associated pathways were significantly correlated with RPGI score. Furthermore, a combination of RPGI with age and tumour stage resulted in significantly improved prognostic accuracy. Conclusions Our findings highlighted the prognostic value of RPGs for risk stratification of CRC patients and provide insights into specific ASEs associated with the development of CRC.
Collapse
Affiliation(s)
- Xiaofan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yujie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, P.R. China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, P.R. China.,Department of Pathology and Urology, University of Rochester Medical Center, Rochester, NY, USA
| | - Liyun Jiang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jun Gao
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yu Cheng
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Hangyu Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yang Wang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Bing Zhang
- Department of Radiology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, P.R. China
| | - Xiaobo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, P.R. China
| | - Fangrong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
2
|
Cotter KA, Nacci D, Champlin D, Yeo AT, Gilmore TD, Callard GV. Adaptive Significance of ERα Splice Variants in Killifish (Fundulus heteroclitus) Resident in an Estrogenic Environment. Endocrinology 2016; 157:2294-308. [PMID: 27070100 DOI: 10.1210/en.2016-1052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The possibility that chronic, multigenerational exposure to environmental estrogens selects for adaptive hormone-response phenotypes is a critical unanswered question. Embryos/larvae of killifish from an estrogenic-polluted environment (New Bedford Harbor, MA [NBH]) compared with those from a reference site overexpress estrogen receptor alpha (ERα) mRNA but are hyporesponsive to estradiol. Analysis of ERα mRNAs in the two populations revealed differences in splicing of the gene encoding ERα (esr1). Here we tested the transactivation functions of four differentially expressed ERα mRNAs and tracked their association with the hyporesponsive phenotype for three generations after transfer of NBH parents to a clean environment. Deletion variants ERαΔ6 and ERαΔ6-8 were specific to NBH killifish, had dominant negative functions in an in vitro reporter assay, and were heritable. Morpholino-mediated induction of ERαΔ6 mRNA in zebrafish embryos verified its role as a dominant negative ER on natural estrogen-responsive promoters. Alternate long (ERαL) and short (ERαS) 5'-variants were similar transcriptionally but differed in estrogen responsiveness (ERαS ≫ ERαL). ERαS accounted for high total ERα expression in first generation (F1) NBH embryos/larvae but this trait was abolished by transfer to clean water. By contrast, the hyporesponsive phenotype of F1 NBH embryos/larvae persisted after long-term laboratory holding but reverted to a normal or hyper-responsive phenotype after two or three generations, suggesting the acquisition of physiological or biochemical traits that compensate for ongoing expression of negative-acting ERαΔ6 and ERαΔ6-8 isoforms. We conclude that a heritable change in the pattern of alternative splicing of ERα pre-mRNA is part of a genetic adaptive response to estrogens in a polluted environment.
Collapse
Affiliation(s)
- Kellie A Cotter
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Diane Nacci
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Denise Champlin
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Alan T Yeo
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Thomas D Gilmore
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| | - Gloria V Callard
- Department of Biology (K.A.C., A.T.Y., T.D.G., G.V.C.), Boston University, Boston, Massachusetts 02215; and Office of Research and Development (D.N., D.C.), National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, U.S. Environmental Protection Agency, Narragansett, Rhode Island 02882
| |
Collapse
|