1
|
Fu W, Lin Y, Bai M, Yao J, Huang C, Gao L, Mi N, Ma H, Tian L, Yue P, Zhang Y, zhang J, Ren Y, Ding L, Dai L, Leung JW, Yuan J, Zhang W, Meng W. Beyond ribosomal function: RPS6 deficiency suppresses cholangiocarcinoma cell growth by disrupting alternative splicing. Acta Pharm Sin B 2024; 14:3931-3948. [PMID: 39309509 PMCID: PMC11413689 DOI: 10.1016/j.apsb.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 09/25/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a bile duct malignancy with a dismal prognosis. This study systematically investigated the role of the ribosomal protein S6 (RPS6) gene, which is dependent in CCA. We found that RPS6 upregulation in CCA tissues was correlated with a poor prognosis. Functional investigations have shown that alterations in RPS6 expression, both gain- and loss-of function could affect the proliferation of CCA cells. In xenograft tumor models, RPS6 overexpression enhances tumorigenicity, whereas RPS6 silencing reduces it. Integration analysis using RNA-seq and proteomics elucidated downstream signaling pathways of RPS6 depletion by affecting the cell cycle, especially DNA replication. Immunoprecipitation followed by mass spectrometry has identified numerous spliceosome complex proteins associated with RPS6. Transcriptomic profiling revealed that RPS6 affects numerous alternative splicing (AS) events, and combined with RNA immunoprecipitation sequencing, revealed that minichromosome maintenance complex component 7 (MCM7) binds to RPS6, which regulates its AS and increases oncogenic activity in CCA. Targeting RPS6 with vivo phosphorodiamidate morpholino oligomer (V-PMO) significantly inhibited the growth of CCA cells, patient-derived organoids, and subcutaneous xenograft tumor. Taken together, the data demonstrate that RPS6 is an oncogenic regulator in CCA and that RPS6-V-PMO could be repositioned as a promising strategy for treating CCA.
Collapse
Affiliation(s)
- Wenkang Fu
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Yanyan Lin
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Mingzhen Bai
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Jia Yao
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Chongfei Huang
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Long Gao
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Ningning Mi
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Haidong Ma
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Liang Tian
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
| | - Ping Yue
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yong Zhang
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Jinduo zhang
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yanxian Ren
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Liyun Ding
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Joseph W. Leung
- Division of Gastroenterology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA 95817, USA
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wenhua Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenbo Meng
- The First School of Clinical Medicne, Lanzhou University, Lanzhou 730030, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
2
|
Malfanti A, Sami H, Balasso A, Marostica G, Arpac B, Mastrotto F, Mantovani G, Cola E, Anton M, Caliceti P, Ogris M, Salmaso S. Control of cell penetration enhancer shielding and endosomal escape-kinetics crucial for efficient and biocompatible siRNA delivery. J Control Release 2023; 363:101-113. [PMID: 37722420 DOI: 10.1016/j.jconrel.2023.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/21/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Although cationic liposomes are efficient carriers for nucleic acid delivery, their toxicity often hampers the clinical translation. Polyethylene glycol (PEG) coating has been largely used to improve their stability and reduce toxicity. Nevertheless, it has been found to decrease the transfection process. In order to exploit the advantages of cationic liposomes and PEG decoration for nucleic acid delivery, liposomes decorated with tetraArg-[G-1]-distearoyl glycerol (Arg4-DAG) dendronic oligo-cationic lipid enhancer (OCE) and PEG-lipid have been investigated. Non decorated or OCE-decorated lipoplexes (OCEfree-LPX and OCE-LPX, respectively) were obtained by lipid film hydration using oligonucleotide (ON) solutions. PEG and OCE/PEG decorated lipoplexes (PEG-OCEfree-LPX and PEG-OCE-LPX, respectively) were obtained by post-insertion of 2 or 5 kDa PEG-DSPE on preformed lipoplexes. The OCE decoration yielded lipoplexes with size of about 240 nm, 84% loading efficiency at 10 N/P ratio, ten times higher than OCEfree-LPX, and prevented the ON release when incubated with physiological heparin concentration or with plasma. The PEG decoration reduced the zeta potential, enhanced the lipoplex stability in serum and decreased both hemolysis and cytotoxicity, while it did not affect the lipoplex size and ON loading. With respect to OCEfree-LPX, the OCE-LPX remarkably associated with cells and were taken up by different cancer cell lines (HeLa and MDA-MB-231). Interestingly, 2 or 5 kDa PEG decoration did not reduce either the cell interaction or the cell up-take of the cationic lipoplexes. With siRNA as a payload, OCE enabled efficient internalization, but endosomal release was hampered. Post-transfection treatment with the lysosomotropic drug chloroquine allowed to identify the optimal time point for endosomal escape. Chloroquine treatment after 12 to 20 h of LPX pre-incubation enabled siRNA mediated target knockdown indicating that this is the time window of endo-lysosomal processing. This indicates that OCE can protect siRNA from lysosomal degradation for up to 20 h, as shown by these rescue experiments.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Haider Sami
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Giulia Marostica
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Busra Arpac
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | | | - Elisa Cola
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Martina Anton
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy
| | - Manfred Ogris
- University of Vienna, Faculty of Life Sciences, Department of Pharmaceutical Sciences, Laboratory of Macromolecular Cancer Therapeutics (MMCT), Josef-Holaubek-Platz 2, Vienna 1090, Austria.
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, Padova 35131, Italy.
| |
Collapse
|
3
|
Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int J Mol Sci 2022; 23:ijms232012190. [PMID: 36293047 PMCID: PMC9603397 DOI: 10.3390/ijms232012190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022] Open
Abstract
Boron cluster-conjugated antisense oligonucleotides (B-ASOs) have already been developed as therapeutic agents with “two faces”, namely as potential antisense inhibitors of gene expression and as boron carriers for boron neutron capture therapy (BNCT). The previously observed high antisense activity of some B-ASOs targeting the epidermal growth factor receptor (EGFR) could not be rationally assigned to the positioning of the boron cluster unit: 1,2-dicarba-closo-dodecaborane (0), [(3,3′-Iron-1,2,1′,2′-dicarbollide) (1-), FESAN], and dodecaborate (2-) in the ASO chain and its structure or charge. For further understanding of this observation, we performed systematic studies on the efficiency of RNase H against a series of B-ASOs models. The results of kinetic analysis showed that pyrimidine-enriched B-ASO oligomers activated RNase H more efficiently than non-modified ASO. The presence of a single FESAN unit at a specific position of the B-ASO increased the kinetics of enzymatic hydrolysis of complementary RNA more than 30-fold compared with unmodified duplex ASO/RNA. Moreover, the rate of RNA hydrolysis enhanced with the increase in the negative charge of the boron cluster in the B-ASO chain. In conclusion, a “smart” strategy using ASOs conjugated with boron clusters is a milestone for the development of more efficient antisense therapeutic nucleic acids as inhibitors of gene expression.
Collapse
|
4
|
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, which usually occurs in children and adolescents. It is generally a high-grade malignancy presenting with extreme metastases to the lungs or other bones. The etiology of the disease is multifaceted and still remains obscure. A combination of surgery and chemotherapy has played a major role in the treatment of OS over the past three decades, and consequently, the overall survival rates for the disease have remained unchanged. Therefore, there is an urgent need to employ new comprehensive analyses and technologies to develop significantly more informative classification systems, with the aim of developing more effective and less toxic therapies for OS patients. This review discusses the existing knowledge of OS therapy and potential methods to develop novel therapeutic agents for the disease.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
5
|
Yang B, Song BP, Shankar S, Guller A, Deng W. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci 2021; 78:5225-5243. [PMID: 33974093 PMCID: PMC11071878 DOI: 10.1007/s00018-021-03850-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Among many nanoparticle-based delivery platforms, liposomes have been particularly successful with many formulations passed into clinical applications. They are well-established and effective gene and/or drug delivery systems, widely used in cancer therapy including breast cancer. In this review we discuss liposome design with the targeting feature and triggering functions. We also summarise the recent progress (since 2014) in liposome-based therapeutics for breast cancer including chemotherapy and gene therapy. We finally identify some challenges on the liposome technology development for the future clinical translation.
Collapse
Affiliation(s)
- Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bo-Ping Song
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechatronic Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaina Shankar
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021; 22:3295. [PMID: 33804856 PMCID: PMC8036554 DOI: 10.3390/ijms22073295] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need. Oligonucleotide therapeutics, which include antisense oligonucleotides, small interfering RNAs, and aptamers, show promising clinical outcomes for disease indications such as Duchenne muscular dystrophy, familial amyloid neuropathies, and macular degeneration. While no approved oligonucleotide drug currently exists for any type of cancer, results obtained in preclinical studies and clinical trials are encouraging. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in oncology, review current clinical trials, and discuss associated challenges.
Collapse
Affiliation(s)
- Haoyu Xiong
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia;
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
7
|
Jayasinghe MK, Tan M, Peng B, Yang Y, Sethi G, Pirisinu M, Le MTN. New approaches in extracellular vesicle engineering for improving the efficacy of anti-cancer therapies. Semin Cancer Biol 2021; 74:62-78. [PMID: 33609665 DOI: 10.1016/j.semcancer.2021.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a disease that evolves continuously with unpredictable outcomes. Although conventional chemotherapy can display significant antitumor effects, the lack of specificity and poor bioavailability remain major concerns in cancer therapy. Moreover, with the advent of novel anti-cancer gene therapies, there is an urgent need for drug delivery vectors capable of bypassing cellular barriers and efficiently transferring therapeutic cargo to recipient cells. A number of drug delivery systems have been proposed to overcome these limitations, but their successful clinical translation has been hampered by the onset of unexpected side effects and associated toxicities. The application of extracellular vesicles (EVs), a class of naturally released, cell-derived particles, as drug delivery vectors presents a breakthrough in nanomedicine, taking into account their biocompatibility and natural role in intercellular communication. Combining the advantageous intrinsic properties of EVs with surface functionalization and the encapsulation of drugs allows for a new class of engineered EVs that serve as effective therapeutic carriers. Here, we describe the various successful approaches involving the application of engineered EVs as bio-derived drug delivery vectors in cancer therapy. The latest and most effective strategies of engineering EVs to improve drug loading, stealth properties and tumour targeting capabilities of EVs are debated. Finally, current obstacles and future perspectives of smart engineered EVs are discussed.
Collapse
Affiliation(s)
- Migara Kavishka Jayasinghe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore; Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Melissa Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Yuqi Yang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marco Pirisinu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong.
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Immunology Programme and Cancer Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Le BT, Raguraman P, Kosbar TR, Fletcher S, Wilton SD, Veedu RN. Antisense Oligonucleotides Targeting Angiogenic Factors as Potential Cancer Therapeutics. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:142-157. [PMID: 30594893 PMCID: PMC6307321 DOI: 10.1016/j.omtn.2018.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of death worldwide, and conventional cancer therapies such as surgery, chemotherapy, and radiotherapy do not address the underlying molecular pathologies, leading to inadequate treatment and tumor recurrence. Angiogenic factors, such as EGF, PDGF, bFGF, TGF-β, TGF-α, VEGF, endoglin, and angiopoietins, play important roles in regulating tumor development and metastasis, and they serve as potential targets for developing cancer therapeutics. Nucleic acid-based therapeutic strategies have received significant attention in the last two decades, and antisense oligonucleotide-mediated intervention is a prominent therapeutic approach for targeted manipulation of gene expression. Clinical benefits of antisense oligonucleotides have been recognized by the U.S. Food and Drug Administration, with full or conditional approval of Vitravene, Kynamro, Exondys51, and Spinraza. Herein we review the scope of antisense oligonucleotides that target angiogenic factors toward tackling solid cancers.
Collapse
Affiliation(s)
- Bao T Le
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Prithi Raguraman
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Tamer R Kosbar
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Susan Fletcher
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Rakesh N Veedu
- Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
9
|
Schrank Z, Khan N, Osude C, Singh S, Miller RJ, Merrick C, Mabel A, Kuckovic A, Puri N. Oligonucleotides Targeting Telomeres and Telomerase in Cancer. Molecules 2018; 23:molecules23092267. [PMID: 30189661 PMCID: PMC6225148 DOI: 10.3390/molecules23092267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Telomeres and telomerase have become attractive targets for the development of anticancer therapeutics due to their involvement in cancer cell immortality. Currently, several therapeutics have been developed that directly target telomerase and telomeres, such as telomerase inhibitors and G-quadruplex stabilizing ligands. Telomere-specific oligonucleotides that reduce telomerase activity and disrupt telomere architecture are also in development as novel anticancer therapeutics. Specifically, GRN163L and T-oligos have demonstrated promising anticancer activity in multiple cancers types via induction of potent DNA damage responses. Currently, several miRNAs have been implicated in the regulation of telomerase activity and may prove to be valuable targets in the development of novel therapies by reducing expression of telomerase subunits. Targeting miRNAs that are known to increase expression of telomerase subunits may be another strategy to reduce carcinogenesis. This review aims to provide a comprehensive understanding of current oligonucleotide-based anticancer therapies that target telomeres and telomerase. These studies may help design novel therapeutic approaches to overcome the challenges of oligonucleotide therapy in a clinical setting.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Collin Merrick
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Alexander Mabel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
10
|
Ghidini A, Murtola M, Strömberg R. Influence of conjugation and other structural changes on the activity of Cu²⁺ based PNAzymes. Org Biomol Chem 2016; 14:2768-73. [PMID: 26856621 DOI: 10.1039/c5ob02394g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that PNA-neocuproine conjugates can act as artificial RNA restriction enzymes. In the present study we have additionally conjugated the PNA with different entities, such as oligoethers, peptides etc. and also constructed systems where the PNA is designed to clamp the target RNA forming a triplex. Some conjugations are detrimental for the activity while most are silent which means that conjugation can be done to alter physical properties without losing activity. Conjugation with a single oligoether close to the neocuproine does enhance the rate almost twofold compared to the system without the oligoether. The systems designed to clamp the RNA target by forming a triplex retain the activity if the added oligoT sequence is 5 PNA units or shorter and extends the arsenal of artificial RNA restriction enzymes. Changing the direction of a closing base pair, where the target RNA forms a bulge, from a GC to a CG pair enhances the rate of cleavage somewhat without compromising the selectivity, leading to the so far most efficient artificial nuclease reported.
Collapse
Affiliation(s)
- A Ghidini
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Hälsovägen 7, S-14183 Huddinge, Sweden.
| | - M Murtola
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Hälsovägen 7, S-14183 Huddinge, Sweden. and Turku University, Department of Chemistry, Turku 20014, Finland
| | - R Strömberg
- Karolinska Institutet, Department of Biosciences and Nutrition, Novum, Hälsovägen 7, S-14183 Huddinge, Sweden.
| |
Collapse
|
11
|
Yuan A, Laing B, Hu Y, Ming X. Direct oligonucleotide-photosensitizer conjugates for photochemical delivery of antisense oligonucleotides. Chem Commun (Camb) 2015; 51:6678-80. [PMID: 25786195 DOI: 10.1039/c5cc00573f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activation of photosensitizers in endosomes enables release of therapeutic macromolecules into the cytosol of the target cells for pharmacological actions. In this study, we demonstrate that direct conjugation of photosensitizers to oligonucleotides (ONs) allows spatial and temporal co-localization of the two modalities in the target cells, and thus leads to superior functional delivery of ONs. Further, light-activated delivery of an anticancer ON caused cancer cell killing via modulation of an oncogene and photodynamic therapy.
Collapse
Affiliation(s)
- Ahu Yuan
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
12
|
Li Z, Li Q, Han L, Tian N, Liang Q, Li Y, Zhao X, Du C, Tian Y. Pro-apoptotic effects of splice-switching oligonucleotides targeting Bcl-x pre-mRNA in human glioma cell lines. Oncol Rep 2015; 35:1013-9. [PMID: 26718027 DOI: 10.3892/or.2015.4465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/26/2015] [Indexed: 11/06/2022] Open
Abstract
Alternative splicing is a near-ubiquitous phenomenon with important roles in human diseases, including cancers. Splice-switching oligonucleotides (SSOs) have emerged as a class of antisense therapeutics that modulate alternative splicing by hybridizing to the pre-mRNA splice site. The Bcl-x gene is alternatively spliced to express anti‑apoptotic Bcl-xL and pro-apoptotic Bcl-xS. Bcl-xL expression is upregulated in many cancers and is considered a general mechanism by which cancer cells evade apoptosis. By redirecting Bcl-x pre-mRNA splicing from Bcl-xL to Bcl-xS, SSO exerted pro-apoptotic and chemosensitizing effects in various cancer cell lines. In this study, we investigated the effects of SSO targeting Bcl-x pre-mRNA in human glioma cell lines. First, we performed reverse transcription-polymerase chain reaction (RT-PCR) and western blotting to determine the mRNA and protein expression levels of Bcl-xL in glioma cell lines (U87 and U251) and a normal human astrocyte cell line (HA1800). Then, the Bcl-x SSO was designed to bind to the downstream 5' alternative splice site of exon 2 in Bcl-x pre-mRNA and was modified using 2'-O-methoxyethyl-phosphorothioate. An oligonucleotide targeting aberrantly spliced human β-globin intron was used as a negative control. The SSOs were delivered with a cationic lipid into glioma and astrocyte cell lines. The antitumor effects of the SSOs were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and flow cytometry, and the switch in production from Bcl-xL to Bcl-xS was analyzed by RT-PCR and western blotting. Bcl-xL mRNA and protein were highly expressed in both glioma cell lines. The Bcl-x SSO modified Bcl-x pre-mRNA splicing and had pro-apoptotic effects on the glioma cell lines. By contrast, the lipid alone and the control SSO did not affect Bcl-xL expression or induce apoptosis. Our study demonstrated the antitumor activity of an SSO that targets Bcl-x pre-mRNA splicing in glioma cell lines. Bcl-x SSO may be a potential strategy for treating gliomas.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Qingwei Li
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Liang Han
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Nan Tian
- Department of Cell Biology, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Qianlei Liang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Yanzhe Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Xingli Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Yu Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130031, P.R. China
| |
Collapse
|
13
|
Yip L, Fathman CG. Type 1 diabetes in mice and men: gene expression profiling to investigate disease pathogenesis. Immunol Res 2015; 58:340-50. [PMID: 24682832 DOI: 10.1007/s12026-014-8501-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a complex polygenic disease that is triggered by various environmental factors in genetically susceptible individuals. The emphasis placed on genome-wide association studies to explain the genetics of T1D has failed to advance our understanding of T1D pathogenesis or identify biomarkers of disease progression or therapeutic targets. Using the nonobese diabetic (NOD) mouse model of T1D and the non-disease prone congenic NOD.B10 mice, our laboratory demonstrated striking tissue-specific and age-dependent changes in gene expression during disease progression. We established a "roadmap" of differential gene expression and used this to identify candidate genes in mice (and human orthologs) that play a role in disease pathology. Here, we describe two genes, Deformed epidermal autoregulatory factor 1 (Deaf1) and Adenosine A1 receptor (Adora1), that are differentially expressed and alternatively spliced in the pancreatic lymph nodes or islets of NOD mice and T1D patients to form dominant-negative non-functional isoforms. Loss of Deaf1 function leads to reduced peripheral tissue antigen expression in lymph node stromal cells and may contribute to a breakdown in peripheral tolerance, while reduced Adora1 function results in an early intrinsic alpha cell defect that may explain the hyperglucagonemia and resulting beta cell stress observed prior to the onset of diabetes. Remarkably, both genes were also alternatively spliced in the same tissues of auto-antibody positive prediabetic patients, and these splicing events resulted in similar downstream effects as those seen in NOD mice. These findings demonstrate the value of gene expression profiling in studying disease pathogenesis in T1D.
Collapse
Affiliation(s)
- Linda Yip
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, CCSR Room 2225, Stanford, CA, 94305-5166, USA
| | | |
Collapse
|
14
|
Rydzak JW, White DE, Airiau CY, Sterbenz JT, York BD, Clancy DJ, Dai Q. Real-Time Process Analytical Technology Assurance for Flow Synthesis of Oligonucleotides. Org Process Res Dev 2014. [DOI: 10.1021/op500035j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- James W. Rydzak
- Product Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - David E. White
- Product Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Christian Y. Airiau
- Product Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Jeffrey T. Sterbenz
- Product Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Brian D. York
- Product Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Donald J. Clancy
- Product Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Qunying Dai
- Product Development, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| |
Collapse
|
15
|
Fuhlbrigge R, Yip L. Self-antigen expression in the peripheral immune system: roles in self-tolerance and type 1 diabetes pathogenesis. Curr Diab Rep 2014; 14:525. [PMID: 25030265 DOI: 10.1007/s11892-014-0525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type 1 diabetes (T1D) may result from a breakdown in peripheral tolerance that is partially controlled by the ectopic expression of peripheral tissue antigens (PTAs) in lymph nodes. Various subsets of lymph node stromal cells and certain hematopoietic cells play a role in maintaining T cell tolerance. These specialized cells have been shown to endogenously transcribe, process, and present a range of PTAs to naive T cells and mediate the clonal deletion or inactivation of autoreactive cells. During the progression of T1D, inflammation leads to reduced PTA expression in the pancreatic lymph nodes and the production of novel islet antigens that T cells are not tolerized against. These events allow for the escape and activation of autoreactive T cells and may contribute to the pathogenesis of T1D. In this review, we discuss recent findings in this area and propose possible therapies that may help reestablish self-tolerance during T1D.
Collapse
Affiliation(s)
- Rebecca Fuhlbrigge
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, 269 Campus Drive, CCSR Room 2240, Stanford, CA, 94305-5166, USA,
| | | |
Collapse
|