1
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
2
|
Trampe E, Kühl M. Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms. JOURNAL OF PHYCOLOGY 2016; 52:990-996. [PMID: 27439961 DOI: 10.1111/jpy.12450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Chlorophyll (Chl) f, the most far-red (720-740 nm) absorbing Chl species, was discovered in cyanobacterial isolates from stromatolites and subsequently in other habitats as well. However, the spatial distribution and temporal dynamics of Chl f in a natural habitat have so far not been documented. Here, we report the presence of Chl f in cyanobacterial beachrock biofilms. Hyperspectral imaging on cross-sections of beachrock from Heron Island (Great Barrier Reef, Australia), showed a strong and widely distributed signature of Chl f absorption in an endolithic layer below the dense cyanobacterial surface biofilm that could be localized to aggregates of Chroococcidiopsis-like unicellular cyanobacteria packed within a thick common sheath. High-pressure liquid chromatography-based pigment analyses showed in situ ratios of Chl f to Chl a of 5% in brown-pigmented zones of the beachrock, with lower ratios of ~0.5% in the black- and pink-pigmented biofilm zones. Enrichment experiments with black beachrock biofilm showed stimulated synthesis of Chl f and Chl d when grown under near-infrared radiation (NIR; 740 nm), with a Chl f to Chl a ratio increasing 4-fold to 2%, whereas the Chl d to Chl a ratio went from 0% to 0.8%. Enrichments grown under white light (400-700 nm) produced no detectable amounts of either Chl d or Chl f. Beachrock cyanobacteria thus exhibited characteristics of far-red light photoacclimation, enabling Chl f -containing cyanobacteria to thrive in optical niches deprived of visible light when sufficient NIR is prevalent.
Collapse
Affiliation(s)
- Erik Trampe
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Rapid TaqMan-based quantification of chlorophyll d-containing cyanobacteria in the genus Acaryochloris. Appl Environ Microbiol 2014; 80:3244-9. [PMID: 24632258 DOI: 10.1128/aem.00334-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Reports of the chlorophyll (Chl) d-containing cyanobacterium Acaryochloris have accumulated since its initial discovery in 1996. The majority of this evidence is based on amplification of the gene coding for the 16S rRNA, and due to the wide geographical distribution of these sequences, a global distribution of Acaryochloris species was suggested. Here, we present a rapid, reliable, and cost-effective TaqMan-based quantitative PCR (qPCR) assay that was developed for the specific detection of Acaryochloris species in complex environmental samples. The TaqMan probe showed detection limits of ~10 16S rRNA gene copy numbers based on standard curves consisting of plasmid inserts. DNA from five Acaryochloris strains, i.e., MBIC11017, CCMEE5410, HICR111A, CRS, and Awaji-1, exhibited amplification efficiencies of >94% when tested in the TaqMan assay. When used on complex natural communities, the TaqMan assay detected the presence of Acaryochloris species in four out of eight samples of crustose coralline algae (CCA), collected from temperate and tropical regions. In three out of these TaqMan-positive samples, the presence of Chl d was confirmed via high-performance liquid chromatography (HPLC), and corresponding cell estimates of Acaryochloris species amounted to 7.6 × 10(1) to 3.0 × 10(3) per mg of CCA. These numbers indicate a substantial contribution of Chl d-containing cyanobacteria to primary productivity in endolithic niches. The new TaqMan assay allows quick and easy screening of environmental samples for the presence of Acaryochloris species and is an important tool to further resolve the global distribution and significance of this unique oxyphototroph.
Collapse
|
4
|
Behrendt L, Staal M, Cristescu SM, Harren FJ, Schliep M, Larkum AW, Kühl M. Reactive oxygen production induced by near-infrared radiation in three strains of the Chl d-containing cyanobacterium Acaryochloris marina. F1000Res 2013; 2:44. [PMID: 24555034 PMCID: PMC3894803 DOI: 10.12688/f1000research.2-44.v2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2013] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria in the genus
Acaryochloris have largely exchanged Chl
a with Chl
d, enabling them to harvest near-infrared-radiation (NIR) for oxygenic photosynthesis, a biochemical pathway prone to generate reactive oxygen species (ROS). In this study, ROS production under different light conditions was quantified in three
Acaryochloris strains (MBIC11017, HICR111A and the novel strain CRS) using a real-time ethylene detector in conjunction with addition of 2-keto-4-thiomethylbutyric acid, a substrate that is converted to ethylene when reacting with certain types of ROS. In all strains, NIR was found to generate less ROS than visible light (VIS). More ROS was generated if strains MBIC11017 and HICR111A were adapted to NIR and then exposed to VIS, while strain CRS demonstrated the opposite behavior. This is the very first study of ROS generation and suggests that
Acaryochloris can avoid a considerable amount of light-induced stress by using NIR instead of VIS for its photosynthesis, adding further evolutionary arguments to their widespread appearance.
Collapse
Affiliation(s)
- Lars Behrendt
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, DK-3000, Denmark ; Section for Microbiology, Department of Biology, University of Copenhagen, Sølvgade, DK-1307, Denmark
| | - Marc Staal
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, DK-3000, Denmark
| | - Simona M Cristescu
- Life Science Trace Gas Facility, Radboud University Nijmegen, Heyendaalseweg, 6525 AJ, Netherlands
| | - Frans Jm Harren
- Life Science Trace Gas Facility, Radboud University Nijmegen, Heyendaalseweg, 6525 AJ, Netherlands
| | - Martin Schliep
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Anthony Wd Larkum
- Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, DK-3000, Denmark ; Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology Sydney, Sydney, NSW 2007, Australia ; Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| |
Collapse
|