1
|
Zhang Z, Zhou J, Wang X, Yang H, Fan Y. Initial Solution Generation and Diversified Variable Picking in Local Search for (Weighted) Partial MaxSAT. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1846. [PMID: 36554251 PMCID: PMC9777583 DOI: 10.3390/e24121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The (weighted) partial maximum satisfiability ((W)PMS) problem is an important generalization of the classic problem of propositional (Boolean) satisfiability with a wide range of real-world applications. In this paper, we propose an initialization and a diversification strategy to improve local search for the (W)PMS problem. Our initialization strategy is based on a novel definition of variables' structural entropy, and it aims to generate a solution that is close to a high-quality feasible one. Then, our diversification strategy picks a variable in two possible ways, depending on a parameter: continuing to pick variables with the best benefits or focusing on a clause with the greatest penalty and then selecting variables probabilistically. Based on these strategies, we developed a local search solver dubbed ImSATLike, as well as a hybrid solver ImSATLike-TT, and experimental results on (weighted) partial MaxSAT instances in recent MaxSAT Evaluations show that they outperform or have nearly the same performances as state-of-the-art local search and hybrid competitors, respectively, in general. Furthermore, we carried out experiments to confirm the individual impacts of each proposed strategy.
Collapse
Affiliation(s)
- Zaijun Zhang
- School of Mathematics and Statistics, Qiannan Normal University for Nationalities, Duyun 558000, China
- Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, China
| | - Jincheng Zhou
- Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, China
- School of Computer and Information, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiaoxia Wang
- School of Mathematics and Statistics, Qiannan Normal University for Nationalities, Duyun 558000, China
- Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, China
| | - Heng Yang
- School of Mathematics and Statistics, Qiannan Normal University for Nationalities, Duyun 558000, China
- Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, China
| | - Yi Fan
- School of Mathematics and Statistics, Qiannan Normal University for Nationalities, Duyun 558000, China
- Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, China
- Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
2
|
Charpentier A, Mignon D, Barbe S, Cortes J, Schiex T, Simonson T, Allouche D. Variable Neighborhood Search with Cost Function Networks To Solve Large Computational Protein Design Problems. J Chem Inf Model 2018; 59:127-136. [DOI: 10.1021/acs.jcim.8b00510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David Mignon
- Laboratoire de Biochimie (CNRS UMR 7654), École Polytechnique, 91128 Palaiseau, France
| | - Sophie Barbe
- Laboratoire d’Ingénierie des Systèmes Biologiques et Procédés, LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France
| | - Juan Cortes
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France
| | - Thomas Schiex
- MIAT, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France
| | - Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR 7654), École Polytechnique, 91128 Palaiseau, France
| | - David Allouche
- MIAT, Université de Toulouse, INRA, 31326 Castanet-Tolosan, France
| |
Collapse
|
3
|
Traoré S, Allouche D, André I, Schiex T, Barbe S. Deterministic Search Methods for Computational Protein Design. Methods Mol Biol 2017; 1529:107-123. [PMID: 27914047 DOI: 10.1007/978-1-4939-6637-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One main challenge in Computational Protein Design (CPD) lies in the exploration of the amino-acid sequence space, while considering, to some extent, side chain flexibility. The exorbitant size of the search space urges for the development of efficient exact deterministic search methods enabling identification of low-energy sequence-conformation models, corresponding either to the global minimum energy conformation (GMEC) or an ensemble of guaranteed near-optimal solutions. In contrast to stochastic local search methods that are not guaranteed to find the GMEC, exact deterministic approaches always identify the GMEC and prove its optimality in finite but exponential worst-case time. After a brief overview on these two classes of methods, we discuss the grounds and merits of four deterministic methods that have been applied to solve CPD problems. These approaches are based either on the Dead-End-Elimination theorem combined with A* algorithm (DEE/A*), on Cost Function Networks algorithms (CFN), on Integer Linear Programming solvers (ILP) or on Markov Random Fields solvers (MRF). The way two of these methods (DEE/A* and CFN) can be used in practice to identify low-energy sequence-conformation models starting from a pairwise decomposed energy matrix is detailed in this review.
Collapse
Affiliation(s)
- Seydou Traoré
- INSA, UPS, INP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
- Laboratoire d'Ingénierie Ingénierie des Systèmes Biologiques et des Procédés - INSA, INRA, UMR792, 31400, Toulouse, France
- CNRS, UMR5504, 31400, Toulouse, France
| | - David Allouche
- Unité de Mathématiques et Informatique de Toulouse, UR 875, INRA, 31320, Castanet Tolosan, France
| | - Isabelle André
- INSA, UPS, INP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France
- Laboratoire d'Ingénierie Ingénierie des Systèmes Biologiques et des Procédés - INSA, INRA, UMR792, 31400, Toulouse, France
- CNRS, UMR5504, 31400, Toulouse, France
| | - Thomas Schiex
- Unité de Mathématiques et Informatique de Toulouse, UR 875, INRA, 31320, Castanet Tolosan, France
| | - Sophie Barbe
- INSA, UPS, INP, Université de Toulouse, 135 Avenue de Rangueil, 31077, Toulouse, France.
- Laboratoire d'Ingénierie Ingénierie des Systèmes Biologiques et des Procédés - INSA, INRA, UMR792, 31400, Toulouse, France.
- CNRS, UMR5504, 31400, Toulouse, France.
| |
Collapse
|