1
|
Mishra A, Agrawal M, Ali A, Garg P. Uninterrupted real-time cerebral stress level monitoring using wearable biosensors: A review. Biotechnol Appl Biochem 2023; 70:1895-1914. [PMID: 37455443 DOI: 10.1002/bab.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Stress is the major unseen bug for the health of humans with the increasing workaholic era. Long periods of avoidance are the main precursor for chronic disorders that are quite tough to treat. As precaution is better than cure, stress detection and monitoring are vital. Although there are ways to measure stress clinically, there is still a constant need and demand for methods that measure stress personally and in an ex vitro manner for the convenience of the user. The concept of continuous stress monitoring has been introduced to tackle the issue of unseen stress accumulating in the body simultaneously with being user-friendly and reliable. Stress biosensors nowadays provide real-time, noninvasive, and continuous monitoring of stress. These biosensors are innovative anthropogenic creations that are a combination of biomarkers and indicators like heart rate variation, electrodermal activity, skin temperature, galvanic skin response, and electroencephalograph of stress in the body along with machine learning algorithms and techniques. The collaboration of biological markers, artificial intelligence techniques, and data science tools makes stress biosensors a hot topic for research. These attributes have made continuous stress detection a possibility with ease. The advancement in stress biosensing technologies has made a great impact on the lives of human beings so far. This article focuses on the comprehensive study of stress-indicating biomarkers and the techniques along with principles of the biosensors used for continuous stress detection. The precise overview of wearable stress monitoring systems is also sectioned to pave a pathway for possible future research studies.
Collapse
Affiliation(s)
- Anuja Mishra
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Mukti Agrawal
- Department of Biotechnology, Institute of Applied Science & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Aaliya Ali
- School of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Center for Omics and Biodiversity Research, Shoolini University, Solan, Himachal Pradesh, India
| | - Prakrati Garg
- School of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
- Center for Omics and Biodiversity Research, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
2
|
Ritacco T, Di Cianni W, Perziano D, Magarò P, Convertino A, Maletta C, De Luca A, Sanz de León A, Giocondo M. High-Resolution 3D Fabrication of Glass Fiber-Reinforced Polymer Nanocomposite (FRPN) Objects by Two-Photon Direct Laser Writing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17754-17762. [PMID: 35394738 PMCID: PMC9026244 DOI: 10.1021/acsami.1c21708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This paper reports on the nanofabrication of a fiber-reinforced polymer nanocomposite (FRPN) by two-photon direct laser writing (TP-DLW) using silica nanowires (SiO2 NWs) as nanofillers, since they feature a refractive index very close to that of the photoresist used as a polymeric matrix. This allows for the best resolution offered by the TP-DLW technique, even with high loads of SiO2 NWs, up to 70 wt %. The FRPN presented an increase of approximately 4 times in Young's modulus (8.23 GPa) and nanohardness (120 MPa) when compared to those of the bare photoresist, indicating how the proposed technique is well-suited for applications with higher structural requirements. Moreover, three different printing configurations can be implemented thanks to the use of silicon chips, on which the SiO2 NWs are grown, as fabrication substrates. First, they can be effectively used as an adhesive layer when the laser beam is focused at the interface with the silicon substrate. Second, they can be used as a sacrificial layer, when the laser beam is focused in a plane inside the SiO2 NW layer. Third, only the outer shell of the object is printed so that the SiO2 NW tangle acts as the internal skeleton for the structure being fabricated in the so-called shell and scaffold printing strategy.
Collapse
Affiliation(s)
- Tiziana Ritacco
- Institute
of Nanotechnology—Nanotec Consiglio Nazionale delle Ricerche—Sede
di Cosenza. Ponte P.
Bucci - Cubo 33C, Rende 87036, Italy
- Physics
Department, University of Calabria, 87036 Arcavacata
di Rende, CS, Italy
| | - Wera Di Cianni
- Institute
of Nanotechnology—Nanotec Consiglio Nazionale delle Ricerche—Sede
di Cosenza. Ponte P.
Bucci - Cubo 33C, Rende 87036, Italy
- Physics
Department, University of Calabria, 87036 Arcavacata
di Rende, CS, Italy
- Departamento
de Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de
Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
| | - Dario Perziano
- Physics
Department, University of Calabria, 87036 Arcavacata
di Rende, CS, Italy
| | - Pietro Magarò
- Department
of Mechanical, Energy and Management Engineering, University of Calabria, Cubo 44C, Arcavacata di Rende 87036, Italy
| | - Annalisa Convertino
- Institute
for Microelectronics and Microsystems—IMM Consiglio Nazionale
delle Ricerche, via del
Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Carmine Maletta
- Department
of Mechanical, Energy and Management Engineering, University of Calabria, Cubo 44C, Arcavacata di Rende 87036, Italy
| | - Antonio De Luca
- Institute
of Nanotechnology—Nanotec Consiglio Nazionale delle Ricerche—Sede
di Cosenza. Ponte P.
Bucci - Cubo 33C, Rende 87036, Italy
- Physics
Department, University of Calabria, 87036 Arcavacata
di Rende, CS, Italy
| | - Alberto Sanz de León
- Departamento
de Ciencia de los Materiales, I. M. y Q. I., IMEYMAT, Facultad de
Ciencias, Universidad de Cádiz, Campus Río San Pedro, s/n, 11510 Puerto Real, Cádiz, Spain
| | - Michele Giocondo
- Institute
of Nanotechnology—Nanotec Consiglio Nazionale delle Ricerche—Sede
di Cosenza. Ponte P.
Bucci - Cubo 33C, Rende 87036, Italy
| |
Collapse
|
3
|
Barreiro Carpio M, Dabaghi M, Ungureanu J, Kolb MR, Hirota JA, Moran-Mirabal JM. 3D Bioprinting Strategies, Challenges, and Opportunities to Model the Lung Tissue Microenvironment and Its Function. Front Bioeng Biotechnol 2021; 9:773511. [PMID: 34900964 PMCID: PMC8653950 DOI: 10.3389/fbioe.2021.773511] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Human lungs are organs with an intricate hierarchical structure and complex composition; lungs also present heterogeneous mechanical properties that impose dynamic stress on different tissue components during the process of breathing. These physiological characteristics combined create a system that is challenging to model in vitro. Many efforts have been dedicated to develop reliable models that afford a better understanding of the structure of the lung and to study cell dynamics, disease evolution, and drug pharmacodynamics and pharmacokinetics in the lung. This review presents methodologies used to develop lung tissue models, highlighting their advantages and current limitations, focusing on 3D bioprinting as a promising set of technologies that can address current challenges. 3D bioprinting can be used to create 3D structures that are key to bridging the gap between current cell culture methods and living tissues. Thus, 3D bioprinting can produce lung tissue biomimetics that can be used to develop in vitro models and could eventually produce functional tissue for transplantation. Yet, printing functional synthetic tissues that recreate lung structure and function is still beyond the current capabilities of 3D bioprinting technology. Here, the current state of 3D bioprinting is described with a focus on key strategies that can be used to exploit the potential that this technology has to offer. Despite today's limitations, results show that 3D bioprinting has unexplored potential that may be accessible by optimizing bioink composition and looking at the printing process through a holistic and creative lens.
Collapse
Affiliation(s)
- Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Julia Ungureanu
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Martin R. Kolb
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeremy A. Hirota
- Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jose Manuel Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Centre for Advanced Light Microscopy, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Ng WL, Lee JM, Zhou M, Chen YW, Lee KXA, Yeong WY, Shen YF. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges. Biofabrication 2020; 12:022001. [PMID: 31822648 DOI: 10.1088/1758-5090/ab6034] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the years, the field of bioprinting has attracted attention for its highly automated fabrication system that enables the precise patterning of living cells and biomaterials at pre-defined positions for enhanced cell-matrix and cell-cell interactions. Notably, vat polymerization (VP)-based bioprinting is an emerging bioprinting technique for various tissue engineering applications due to its high fabrication accuracy. Particularly, different photo-initiators (PIs) are utilized during the bioprinting process to facilitate the crosslinking mechanism for fabrication of high-resolution complex tissue constructs. The advancements in VP-based printing have led to a paradigm shift in fabrication of tissue constructs from cell-seeding of tissue scaffolds (non-biocompatible fabrication process) to direct bioprinting of cell-laden tissue constructs (biocompatible fabrication process). This paper, presenting a first-time comprehensive review of the VP-based bioprinting process, provides an in-depth analysis and comparison of the various biocompatible PIs and highlights the important considerations and bioprinting requirements. This review paper reports a detailed analysis of its printing process and the influence of light-based curing modality and PIs on living cells. Lastly, this review also highlights the significance of VP-based bioprinting, the regulatory challenges and presents future directions to transform the VP-based printing technology into imperative tools in the field of tissue engineering and regenerative medicine. The readers will be informed on the current limitations and achievements of the VP-based bioprinting techniques. Notably, the readers will realize the importance and value of highly-automated platforms for tissue engineering applications and be able to develop objective viewpoints towards this field.
Collapse
Affiliation(s)
- Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, 639798, Singapore. Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|