1
|
Desiderio S, Schwaller F, Tartour K, Padmanabhan K, Lewin GR, Carroll P, Marmigere F. Touch receptor end-organ innervation and function require sensory neuron expression of the transcription factor Meis2. eLife 2024; 12:RP89287. [PMID: 38386003 PMCID: PMC10942617 DOI: 10.7554/elife.89287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Touch sensation is primarily encoded by mechanoreceptors, called low-threshold mechanoreceptors (LTMRs), with their cell bodies in the dorsal root ganglia. Because of their great diversity in terms of molecular signature, terminal endings morphology, and electrophysiological properties, mirroring the complexity of tactile experience, LTMRs are a model of choice to study the molecular cues differentially controlling neuronal diversification. While the transcriptional codes that define different LTMR subtypes have been extensively studied, the molecular players that participate in their late maturation and in particular in the striking diversity of their end-organ morphological specialization are largely unknown. Here we identified the TALE homeodomain transcription factor Meis2 as a key regulator of LTMRs target-field innervation in mice. Meis2 is specifically expressed in cutaneous LTMRs, and its expression depends on target-derived signals. While LTMRs lacking Meis2 survived and are normally specified, their end-organ innervations, electrophysiological properties, and transcriptome are differentially and markedly affected, resulting in impaired sensory-evoked behavioral responses. These data establish Meis2 as a major transcriptional regulator controlling the orderly formation of sensory neurons innervating peripheral end organs required for light touch.
Collapse
Affiliation(s)
- Simon Desiderio
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | - Frederick Schwaller
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | | | | | - Gary R Lewin
- Department of Neuroscience, Max‐Delbrück Centre for Molecular MedicineBerlin‐BuchGermany
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM U 1298MontpellierFrance
| | | |
Collapse
|
2
|
Tsai NW, Lin CC, Yeh TY, Chiu YA, Chiu HH, Huang HP, Hsieh ST. An induced pluripotent stem cell-based model identifies molecular targets of vincristine neurotoxicity. Dis Model Mech 2022; 15:dmm049471. [PMID: 36518084 PMCID: PMC10655812 DOI: 10.1242/dmm.049471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2023] Open
Abstract
To model peripheral nerve degeneration and investigate molecular mechanisms of neurodegeneration, we established a cell system of induced pluripotent stem cell (iPSC)-derived sensory neurons exposed to vincristine, a drug that frequently causes chemotherapy-induced peripheral neuropathy. Sensory neurons differentiated from iPSCs exhibit distinct neurochemical patterns according to the immunocytochemical phenotypes, and gene expression of peripherin (PRPH, hereafter referred to as Peri) and neurofilament heavy chain (NEFH, hereafter referred to as NF). The majority of iPSC-derived sensory neurons were PRPH positive/NEFH negative, i.e. Peri(+)/NF(-) neurons, whose somata were smaller than those of Peri(+)/NF(+) neurons. On exposure to vincristine, projections from the cell body of a neuron, i.e. neurites, were degenerated quicker than somata, the lethal concentration to kill 50% (LC50) of neurites being below the LC50 for somata, consistent with the clinical pattern of length-dependent neuropathy. We then examined the molecular expression in the MAP kinase signaling pathways of, extracellular signal-regulated kinases 1/2 (MAPK1/3, hereafter referred to as ERK), p38 mitogen-activated protein kinases (MAPK11/12/13/14, hereafter referred to as p38) and c-Jun N-terminal kinases (MAPK8/9/10, hereafter referred to as JNK). Regarding these three cascades, only phosphorylation of JNK was upregulated but not that of p38 or ERK1/2. Furthermore, vincristine-treatment resulted in impaired autophagy and reduced autophagic flux. Rapamycin-treatment reversed the effect of impaired autophagy and JNK activation. These results not only established a platform to study peripheral degeneration of human neurons but also provide molecular mechanisms for neurodegeneration with the potential for therapeutic targets.
Collapse
Affiliation(s)
- Neng-Wei Tsai
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Cheng-Chen Lin
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-An Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsin-Hui Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsiang-Po Huang
- Department of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei 100, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
3
|
Follis RM, Tep C, Genaro-Mattos TC, Kim ML, Ryu JC, Morrison VE, Chan JR, Porter N, Carter BD, Yoon SO. Metabolic Control of Sensory Neuron Survival by the p75 Neurotrophin Receptor in Schwann Cells. J Neurosci 2021; 41:8710-8724. [PMID: 34507952 PMCID: PMC8528492 DOI: 10.1523/jneurosci.3243-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/21/2022] Open
Abstract
We report that the neurotrophin receptor p75 contributes to sensory neuron survival through the regulation of cholesterol metabolism in Schwann cells. Selective deletion of p75 in mouse Schwann cells of either sex resulted in a 30% loss of dorsal root ganglia (DRG) neurons and diminished thermal sensitivity. P75 regulates Schwann cell cholesterol biosynthesis in response to BDNF, forming a co-receptor complex with ErbB2 and activating ErbB2-mediated stimulation of sterol regulatory element binding protein 2 (SREBP2), a master regulator of cholesterol synthesis. Schwann cells lacking p75 exhibited decreased activation of SREBP2 and a reduction in 7-dehydrocholesterol (7-DHC) reductase (DHCR7) expression, resulting in accumulation of the neurotoxic intermediate, 7-dehyrocholesterol in the sciatic nerve. Restoration of DHCR7 in p75 null Schwann cells in mice significantly attenuated DRG neuron loss. Together, these results reveal a mechanism by which the disruption of lipid metabolism in glial cells negatively influences sensory neuron survival, which has implications for a wide range of peripheral neuropathies.SIGNIFICANCE STATEMENT Although expressed in Schwann cells, the role of p75 in myelination has remained unresolved in part because of its dual expression in sensory neurons that Schwann cells myelinate. When p75 was deleted selectively among Schwann cells, myelination was minimally affected, while sensory neuron survival was reduced by 30%. The phenotype is mainly due to dysregulation of cholesterol biosynthesis in p75-deficient Schwann cells, leading to an accumulation of neurotoxic cholesterol precursor, 7-dehydrocholesterol (7-DHC). Mechanism-wise, we discovered that in response to BDNF, p75 recruits and activates ErbB2 independently of ErbB3, thereby stimulating the master regulator, sterol regulatory element binding protein 2 (SREBP2). These results together highlight a novel role of p75 in Schwann cells in regulating DRG neuron survival by orchestrating proper cholesterol metabolism.
Collapse
Affiliation(s)
- Rose M Follis
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Chhavy Tep
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Thiago C Genaro-Mattos
- Department of Chemistry, Vanderbilt University School of Arts and Sciences, Nashville, Tennessee 37232
| | - Mi Lyang Kim
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Jae Cheon Ryu
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| | - Vivianne E Morrison
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jonah R Chan
- Department of Neurology, University of California San Francisco, San Francisco, California 94158
| | - Ned Porter
- Department of Chemistry, Vanderbilt University School of Arts and Sciences, Nashville, Tennessee 37232
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Sung Ok Yoon
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Oss-Ronen L, Cohen I. Epigenetic regulation and signalling pathways in Merkel cell development. Exp Dermatol 2021; 30:1051-1064. [PMID: 34152646 DOI: 10.1111/exd.14415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
Merkel cells are specialized epithelial cells connected to afferent nerve endings responsible for light-touch sensations, formed at specific locations in touch-sensitive regions of the mammalian skin. Although Merkel cells are descendants of the epidermal lineage, little is known about the mechanisms responsible for the development of these unique mechanosensory cells. Recent studies have highlighted that the Polycomb group (PcG) of proteins play a significant role in spatiotemporal regulation of Merkel cell formation. In addition, several of the major signalling pathways involved in skin development have been shown to regulate Merkel cell development as well. Here, we summarize the current understandings of the role of developmental regulators in Merkel cell formation, including the interplay between the epigenetic machinery and key signalling pathways, and the lineage-specific transcription factors involved in the regulation of Merkel cell development.
Collapse
Affiliation(s)
- Liat Oss-Ronen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
5
|
Wang D, Lu J, Xu X, Yuan Y, Zhang Y, Xu J, Chen H, Liu J, Shen Y, Zhang H. Satellite Glial Cells Give Rise to Nociceptive Sensory Neurons. Stem Cell Rev Rep 2021; 17:999-1013. [PMID: 33389681 DOI: 10.1007/s12015-020-10102-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Dorsal root ganglia (DRG) sensory neurons can transmit information about noxious stimulus to cerebral cortex via spinal cord, and play an important role in the pain pathway. Alterations of the pain pathway lead to CIPA (congenital insensitivity to pain with anhidrosis) or chronic pain. Accumulating evidence demonstrates that nerve damage leads to the regeneration of neurons in DRG, which may contribute to pain modulation in feedback. Therefore, exploring the regeneration process of DRG neurons would provide a new understanding to the persistent pathological stimulation and contribute to reshape the somatosensory function. It has been reported that a subpopulation of satellite glial cells (SGCs) express Nestin and p75, and could differentiate into glial cells and neurons, suggesting that SGCs may have differentiation plasticity. Our results in the present study show that DRG-derived SGCs (DRG-SGCs) highly express neural crest cell markers Nestin, Sox2, Sox10, and p75, and differentiate into nociceptive sensory neurons in the presence of histone deacetylase inhibitor VPA, Wnt pathway activator CHIR99021, Notch pathway inhibitor RO4929097, and FGF pathway inhibitor SU5402. The nociceptive sensory neurons express multiple functionally-related genes (SCN9A, SCN10A, SP, Trpv1, and TrpA1) and are able to generate action potentials and voltage-gated Na+ currents. Moreover, we found that these cells exhibited rapid calcium transients in response to capsaicin through binding to the Trpv1 vanilloid receptor, confirming that the DRG-SGC-derived cells are nociceptive sensory neurons. Further, we show that Wnt signaling promotes the differentiation of DRG-SGCs into nociceptive sensory neurons by regulating the expression of specific transcription factor Runx1, while Notch and FGF signaling pathways are involved in the expression of SCN9A. These results demonstrate that DRG-SGCs have stem cell characteristics and can efficiently differentiate into functional nociceptive sensory neurons, shedding light on the clinical treatment of sensory neuron-related diseases.
Collapse
Affiliation(s)
- Dongyan Wang
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Junhou Lu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaojing Xu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Ye Yuan
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Yu Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Huanhuan Chen
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Jinming Liu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Huanxiang Zhang
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Cheng I, Jin L, Rose LC, Deppmann CD. Temporally restricted death and the role of p75NTR as a survival receptor in the developing sensory nervous system. Dev Neurobiol 2018; 78:701-717. [PMID: 29569362 PMCID: PMC6023755 DOI: 10.1002/dneu.22591] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/26/2018] [Accepted: 03/16/2018] [Indexed: 11/05/2022]
Abstract
The peripheral somatosensory system overproduces neurons early in development followed by a period of cell death during final target innervation. The decision to survive or die in somatosensory neurons of the dorsal root ganglion (DRG) is mediated by target-derived neurotrophic factors and their cognate receptors. Subsets of peripheral somatosensory neurons can be crudely defined by the neurotrophic receptors that they express: peptidergic nociceptors (TrkA+), nonpeptidergic nociceptors (Ret+), mechanoreceptors (Ret+ or TrkB+), and proprioceptors (TrkC+). A direct comparison of early developmental timing between these subsets has not been performed. Here we characterized the accumulation and death of TrkA, B, C, and Ret+ neurons in the DRG as a function of developmental time. We find that TrkB, TrkC, and Ret-expressing neurons in the DRG complete developmental cell death prior to TrkA-expressing neurons. Given the broadly defined roles of the neurotrophin receptor p75NTR in augmenting neurotrophic signaling in sensory neurons, we investigated its role in supporting the survival of these distinct subpopulations. We find that TrkA+, TrkB+, and TrkC+ sensory neuron subpopulations require p75NTR for survival, but proliferating progenitors do not. These data demonstrate how diverging sensory neurons undergo successive waves of cell death and how p75NTR represses the magnitude, but not developmental window of this culling. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 701-717, 2018.
Collapse
Affiliation(s)
- Irene Cheng
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucy Jin
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lucy C. Rose
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
7
|
Kung FH, Sillitti D, Shreiber DI, Zahn JD, Firestein BL. Microfluidic device-assisted etching of p-HEMA for cell or protein patterning. Biotechnol Prog 2017; 34:243-248. [PMID: 29086494 DOI: 10.1002/btpr.2576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Indexed: 11/09/2022]
Abstract
The construction of biomaterials with which to limit the growth of cells or to limit the adsorption of proteins is essential for understanding biological phenomena. Here, we describe a novel method to simply and easily create thin layers of poly (2-hydroxyethyl methacrylate) (p-HEMA) for protein and cellular patterning via etching with ethanol and microfluidic devices. First, a cell culture surface or glass coverslip is coated with p-HEMA. Next, a polydimethylsiloxane (PDMS) microfluidic is placed onto the p-HEMA surface, and ethanol is aspirated through the device. The PDMS device is removed, and the p-HEMA surface is ready for protein adsorption or cell plating. This method allows for the fabrication of 0.3 µm thin layers of p-HEMA, which can be etched to 10 µm wide channels. Furthermore, it creates regions of differential protein adhesion, as shown by Coomassie staining and fluorescent labeling, and cell adhesion, as demonstrated by C2C12 myoblast growth. This method is simple, versatile, and allows biologists and bioengineers to manipulate regions for cell culture adhesion and growth. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:243-248, 2018.
Collapse
Affiliation(s)
- Frank H Kung
- Dept. of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854
| | - David Sillitti
- Dept. of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854
| | - David I Shreiber
- Dept. of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854.,Graduate Faculty in Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854
| | - Jeffrey D Zahn
- Dept. of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854.,Graduate Faculty in Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854
| | - Bonnie L Firestein
- Dept. of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854.,Graduate Faculty in Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854
| |
Collapse
|
8
|
Merkel Cell-Driven BDNF Signaling Specifies SAI Neuron Molecular and Electrophysiological Phenotypes. J Neurosci 2016; 36:4362-76. [PMID: 27076431 DOI: 10.1523/jneurosci.3781-15.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The extent to which the skin instructs peripheral somatosensory neuron maturation is unknown. We studied this question in Merkel cell-neurite complexes, where slowly adapting type I (SAI) neurons innervate skin-derived Merkel cells. Transgenic mice lacking Merkel cells had normal dorsal root ganglion (DRG) neuron numbers, but fewer DRG neurons expressed the SAI markers TrkB, TrkC, and Ret. Merkel cell ablation also decreased downstream TrkB signaling in DRGs, and altered the expression of genes associated with SAI development and function. Skin- and Merkel cell-specific deletion of Bdnf during embryogenesis, but not postnatal Bdnf deletion or Ntf3 deletion, reproduced these results. Furthermore, prototypical SAI electrophysiological signatures were absent from skin regions where Bdnf was deleted in embryonic Merkel cells. We conclude that BDNF produced by Merkel cells during a precise embryonic period guides SAI neuron development, providing the first direct evidence that the skin instructs sensory neuron molecular and functional maturation. SIGNIFICANCE STATEMENT Peripheral sensory neurons show incredible phenotypic and functional diversity that is initiated early by cell-autonomous and local environmental factors found within the DRG. However, the contribution of target tissues to subsequent sensory neuron development remains unknown. We show that Merkel cells are required for the molecular and functional maturation of the SAI neurons that innervate them. We also show that this process is controlled by BDNF signaling. These findings provide new insights into the regulation of somatosensory neuron development and reveal a novel way in which Merkel cells participate in mechanosensation.
Collapse
|
9
|
NGF in Early Embryogenesis, Differentiation, and Pathology in the Nervous and Immune Systems. Curr Top Behav Neurosci 2015; 29:125-152. [PMID: 26695167 DOI: 10.1007/7854_2015_420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The physiology of NGF is extremely complex, and although the study of this neurotrophin began more than 60 years ago, it is far from being concluded. NGF, its precursor molecule pro-NGF, and their different receptor systems (i.e., TrkA, p75NTR, and sortilin) have key roles in the development and adult physiology of both the nervous and immune systems. Although the NGF receptor system and the pathways activated are similar for all types of cells sensitive to NGF, the effects exerted during embryonic differentiation and in committed mature cells are strikingly different and sometimes opposite. Bearing in mind the pleiotropic effects of NGF, alterations in its expression and synthesis, as well as variations in the types of receptor available and in their respective levels of expression, may have profound effects and play multiple roles in the development and progression of several diseases. In recent years, the use of NGF or of inhibitors of its receptors has been prospected as a therapeutic tool in a variety of neurological diseases and injuries. In this review, we outline the different roles played by the NGF system in various moments of nervous and immune system differentiation and physiology, from embryonic development to aging. The data collected over the past decades indicate that NGF activities are highly integrated among systems and are necessary for the maintenance of homeostasis. Further, more integrated and multidisciplinary studies should take into consideration these multiple and interactive aspects of NGF physiology in order to design new therapeutic strategies based on the manipulation of NGF and its intracellular pathways.
Collapse
|
10
|
Chu T, Zhou H, Lu L, Kong X, Wang T, Pan B, Feng S. Valproic acid-mediated neuroprotection and neurogenesis after spinal cord injury: from mechanism to clinical potential. Regen Med 2014; 10:193-209. [PMID: 25485637 DOI: 10.2217/rme.14.86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injury (SCI) is difficult to treat because of secondary injury. Valproic acid (VPA) is clinically approved for mood stabilization, but also counteracts secondary damage to functionally rescue SCI in animal models by improving neuroprotection and neurogenesis via inhibition of HDAC and GSK-3. However, a comprehensive review summarizing the therapeutic benefits and mechanisms of VPA for SCI and the issues affecting clinical trials is lacking, limiting future research on VPA and impeding its translation into clinical therapy for SCI. This article presents the current status of VPA treatment for SCI, emphasizing interactions between enhanced neuroprotection and neurogenesis. Crucial issues are discussed to optimize its clinical potential as a safe and effective treatment for SCI.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Orthopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|