1
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
2
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
3
|
Shorokhov D, Zewail AH. Perspective: 4D ultrafast electron microscopy--Evolutions and revolutions. J Chem Phys 2016; 144:080901. [PMID: 26931672 DOI: 10.1063/1.4941375] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the "single-electron concept" for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. 78, 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to four-dimensional ultrafast electron microscopy (4D UEM), the developments over eight decades have transformed humans' scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook.
Collapse
Affiliation(s)
- Dmitry Shorokhov
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory for Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Ahmed H Zewail
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory for Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
4
|
Chergui M. Time-resolved X-ray spectroscopies of chemical systems: New perspectives. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:031001. [PMID: 27376102 PMCID: PMC4902826 DOI: 10.1063/1.4953104] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.
Collapse
Affiliation(s)
- Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS) , ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Field R, Liu LC, Gawelda W, Lu C, Miller RJD. Spectral Signatures of Ultrafast Spin Crossover in Single Crystal [FeII
(bpy)3
](PF6
)2. Chemistry 2016; 22:5118-22. [DOI: 10.1002/chem.201600374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ryan Field
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
- The Hamburg Centre for Ultrafast Imaging; Centre for Free Electron Laser Science; Max Planck Institute for the Structure and Dynamics of Matter; Bld. 99, Luruper Chaussee 149 22761 Hamburg Germany
| | - Lai Chung Liu
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
- The Hamburg Centre for Ultrafast Imaging; Centre for Free Electron Laser Science; Max Planck Institute for the Structure and Dynamics of Matter; Bld. 99, Luruper Chaussee 149 22761 Hamburg Germany
| | | | - Cheng Lu
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
| | - R. J. Dwayne Miller
- Departments of Chemistry and Physics; University of Toronto; 80 St. George Street Toronto ON M5S 3H6 Canada
- The Hamburg Centre for Ultrafast Imaging; Centre for Free Electron Laser Science; Max Planck Institute for the Structure and Dynamics of Matter; Bld. 99, Luruper Chaussee 149 22761 Hamburg Germany
| |
Collapse
|