1
|
Mukherjee MM, Ghosh R. Synthetic Routes toward Acidic Pentasaccharide Related to the O-Antigen of E. coli 120 Using One-Pot Sequential Glycosylation Reactions. J Org Chem 2017; 82:5751-5760. [DOI: 10.1021/acs.joc.7b00561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
2
|
Mancilla M. Smooth to Rough Dissociation in Brucella: The Missing Link to Virulence. Front Cell Infect Microbiol 2016; 5:98. [PMID: 26779449 PMCID: PMC4700419 DOI: 10.3389/fcimb.2015.00098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Dissociation encompasses changes in a series of phenotypes: colony and cell morphology, inmunological and biochemical reactions and virulence. The concept is generally associated to the in vitro transition between smooth (S) and rough (R) colonies, a phenotypic observation in Gram-negative bacteria commonly made since the beginning of microbiology as a science. It is also well known that the loss of the O-polysaccharide, the most external lipopolysaccharide (LPS) moiety, triggers the change in the colony phenotype. Although dissociation is related to one of the most basic features used to distinguish between species, i.e., colony morphology, and, in the case of pathogens, predict their virulence behavior, it has been considered a laboratory artifact and thus did not gain further attention. However, recent insights into genetics and pathogenesis of members of Brucella, causative agents of brucellosis, have brought a new outlook on this experimental fact, suggesting that it plays a role beyond the laboratory observations. In this perspective article, the current knowledge on Brucella LPS genetics and its connection with dissociation in the frame of evolution is discussed. Latest reports support the notion that, by means of a better understanding of genetic pathways linked to R phenotype and the biological impact of this intriguing "old" phenomenon, unexpected applications can be achieved.
Collapse
Affiliation(s)
- Marcos Mancilla
- Research and Development Department, ADL Diagnostic Chile Ltd.Puerto Montt, Chile
| |
Collapse
|
3
|
Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes. Genetica 2014; 143:241-52. [PMID: 25297844 DOI: 10.1007/s10709-014-9793-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
Abstract
The blackleg and soft-rot diseases caused by pectinolytic enterobacteria such as Pectobacterium and Dickeya are major causes of losses affecting potato crop in the field and upon storage. In this work, we report the isolation, characterization and genome analysis of the Pectobacterium wasabiae (formerly identified as Pectobacterium carotovorum subsp. carotovorum) strain RNS 08.42.1A, that has been isolated from a Solanum tuberosum host plant in France. Comparative genomics with 3 other P. wasabiae strains isolated from potato plants in different areas in North America and Europe, highlighted both a strong similarity at the whole genome level (ANI > 99 %) and a conserved synteny of the virulence genes. In addition, our analyses evidenced a robust separation between these four P. wasabiae strains and the type strain P. wasabiae CFBP 3304(T), isolated from horseradish in Japan. In P. wasabiae RNS 08.42.1A, the expI and expR nucleotidic sequences are more related to those of some Pectobacterium atrosepticum and P. carotovorum strains (90 % of identity) than to those of the other potato P. wasabiae strains (70 to 74 % of identity). This could suggest a recruitment of these genes in the P. wasabiae strain RNS 08.42.1A by an horizontal transfer between pathogens infecting the same potato host plant.
Collapse
|
4
|
Structure and gene cluster of the O-antigen of Escherichia coli O154. Carbohydr Res 2013; 379:51-4. [PMID: 23872328 DOI: 10.1016/j.carres.2013.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/07/2013] [Accepted: 06/08/2013] [Indexed: 11/21/2022]
Abstract
The O-polysaccharide (O-antigen) of Escherichia coli O154 was studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy. The following structure of the branched pentasaccharide repeating unit was established: [structure: see text]. The O-antigen gene cluster of E. coli O154 was sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-polysaccharide structure.
Collapse
|
5
|
Perepelov AV, Wang Q, Senchenkova SN, Feng L, Shashkov AS, Wang L, Knirel YA. Structure and gene cluster of the O-antigen of Escherichia coli O110 containing an amide of D-galacturonic acid with D-allothreonine. Carbohydr Res 2012; 368:57-60. [PMID: 23333950 DOI: 10.1016/j.carres.2012.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/14/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
The O-polysaccharide (O-antigen) was isolated by mild acid degradation of the lipopolysaccharide (LPS) of Escherichia coli O110. The following structure of the linear tetrasaccharide O-unit of the O-polysaccharide was established by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy: D-aThr--6-->4)-α-D-GalpA-(1-->4)-α-D-Galp-(1--3)-α-D-Galp-(1-->3)-β-D-GlcpNAc-(--> where aThr indicates allothreonine. The O-antigen gene cluster of E. coli O110 was sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-antigen structure.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
6
|
Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Gabriel DW, Rott P, Cociancich S. Genomic insights into strategies used by Xanthomonas albilineans with its reduced artillery to spread within sugarcane xylem vessels. BMC Genomics 2012; 13:658. [PMID: 23171051 PMCID: PMC3542200 DOI: 10.1186/1471-2164-13-658] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 11/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. RESULTS Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems. CONCLUSIONS This study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.
Collapse
Affiliation(s)
| | - Monique Royer
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | - Valérie Barbe
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | | | - Ralf Koebnik
- IRD, UMR RPB, F-34394 Montpellier Cedex 5, France
| | - Arnaud Couloux
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | | | - Jérôme Gouzy
- INRA, UMR LIPM, F-31326 Castanet-Tolosan Cedex France
| | | | | | | | - Sophie Mangenot
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | - Stéphane Poussier
- Université de la Réunion, UMR PVBMT, F-97715 Saint-Denis La Réunion, France
| | - Béatrice Segurens
- CEA/DSV/IG/Génoscope, Centre National de Séquençage, F-91057 Evry Cedex France
| | - Boris Szurek
- IRD, UMR RPB, F-34394 Montpellier Cedex 5, France
| | | | - Matthieu Arlat
- Université Paul Sabatier, UMR LIPM, F-31326 Castanet-Tolosan Cedex France
| | - Dean W Gabriel
- University of Florida, Plant Pathology Department, Gainesville FL 32605 USA
| | - Philippe Rott
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
| | - Stéphane Cociancich
- CIRAD, UMR BGPI, F-34398 Montpellier Cedex 5, France
- UMR BGPI, Campus International de Baillarguet, TA A-54/K, F-34398 Montpellier Cedex 5, France
| |
Collapse
|
7
|
Yan Q, Hu X, Wang N. The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance. MOLECULAR PLANT PATHOLOGY 2012; 13:923-934. [PMID: 22458688 PMCID: PMC6638664 DOI: 10.1111/j.1364-3703.2012.00800.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lipopolysaccharide (LPS) is an important virulence factor of Xanthomonas citri ssp. citri, the causative agent of citrus canker disease. In this research, a novel gene, designated as nlxA (novel LPS cluster gene of X. citri ssp. citri), in the LPS cluster of X. citri ssp. citri 306, was characterized. Our results indicate that nlxA is required for O-polysaccharide biosynthesis by encoding a putative rhamnosyltransferase. This is supported by several lines of evidence: (i) NlxA shares 40.14% identity with WsaF, which acts as a rhamnosyltransferase; (ii) sodium dodecylsulphate-polyacrylamide gel electrophoresis analysis showed that four bands of the O-antigen part of LPS were missing in the LPS production of the nlxA mutant; this is also consistent with a previous report that the O-antigen moiety of LPS of X. citri ssp. citri is composed of a rhamnose homo-oligosaccharide; (iii) mutation of nlxA resulted in a significant reduction in the resistance of X. citri ssp. citri to different stresses, including sodium dodecylsulphate, polymyxin B, H(2)O(2), phenol, CuSO(4) and ZnSO(4). In addition, our results indicate that nlxA plays an important role in extracellular polysaccharide production, biofilm formation, stress resistance, motility on semi-solid plates, virulence and in planta growth in the host plant grapefruit.
Collapse
Affiliation(s)
- Qing Yan
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL 33850, USA
| | | | | |
Collapse
|
8
|
Structure and genetics of the O-antigen of Cronobacter sakazakii G2726 (serotype O3) closely related to the O-antigen of C. muytjensii 3270. Carbohydr Res 2012; 355:50-5. [DOI: 10.1016/j.carres.2012.02.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
|
9
|
Perepelov AV, Wang Q, Senchenkova SN, Gong Y, Shashkov AS, Wang L, Knirel YA. Structure and gene cluster of the O-antigen of Escherichia coli O120. Carbohydr Res 2012; 353:106-10. [PMID: 22520503 DOI: 10.1016/j.carres.2012.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 11/25/2022]
Abstract
The acidic O-polysaccharide (O-antigen) of Escherichia coli O120 was isolated from the lipopolysaccharide and studied by sugar analysis and NMR spectroscopy. The following structure of the branched hexasaccharide repeating unit was established, which is unique among the known structures of bacterial polysaccharides: [formula see text] The O-antigen gene cluster of E. coli O120 was sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the O-polysaccharide structure.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
10
|
Ovchinnikova OG, Liu B, Guo D, Kocharova NA, Shashkov AS, Chen M, Feng L, Rozalski A, Knirel YA, Wang L. Localization and molecular characterization of putative O antigen gene clusters of Providencia species. MICROBIOLOGY-SGM 2012; 158:1024-1036. [PMID: 22282517 DOI: 10.1099/mic.0.055210-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterobacteria of the genus Providencia are opportunistic human pathogens associated with urinary tract and wound infections, as well as enteric diseases. The lipopolysaccharide (LPS) O antigen confers major antigenic variability upon the cell surface and is used for serotyping of Gram-negative bacteria. Recently, Providencia O antigen structures have been extensively studied, but no data on the location and organization of the O antigen gene cluster have been reported. In this study, the four Providencia genome sequences available were analysed, and the putative O antigen gene cluster was identified in the polymorphic locus between the cpxA and yibK genes. This finding provided the necessary information for designing primers, and cloning and sequencing the O antigen gene clusters from five more Providencia alcalifaciens strains. The gene functions predicted in silico were in agreement with the known O antigen structures; furthermore, annotation of the genes involved in the three-step synthesis of GDP-colitose (gmd, colD and colC) was supported by cloning and biochemical characterization of the corresponding enzymes. In one strain (P. alcalifaciens O39), no polysaccharide product of the gene cluster in the cpxA-yibK locus was found, and hence genes for synthesis of the existing O antigen are located elsewhere in the genome. In addition to the putative O antigen synthesis genes, homologues of wza, wzb, wzc and (in three strains) wzi, required for the surface expression of capsular polysaccharides, were found upstream of yibK in all species except Providencia rustigianii, suggesting that the LPS of these species may be attributed to the so-called K LPS (K(LPS)). The data obtained open a way for development of a PCR-based typing method for identification of Providencia isolates.
Collapse
Affiliation(s)
- Olga G Ovchinnikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Bin Liu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Dan Guo
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Nina A Kocharova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Miao Chen
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Lu Feng
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| | - Antoni Rozalski
- Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991 Moscow, Russia
| | - Lei Wang
- Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China.,TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
11
|
Zhu H, Perepelov AV, Senchenkova SN, Shashkov AS, Wang L, Knirel YA. Structure and gene cluster of the O-antigen of Escherichia coli O41. Carbohydr Res 2011; 349:86-9. [PMID: 22244340 DOI: 10.1016/j.carres.2011.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/07/2011] [Accepted: 12/09/2011] [Indexed: 11/26/2022]
Abstract
The acidic O-polysaccharide (O-antigen) of Escherichia coli O41 was studied by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy, and the following structure of the branched hexasaccharide repeating unit was established: This structure is unique among the known structures of bacterial polysaccharides. The O-antigen gene cluster of E. coli O41 was sequenced. The gene functions were tentatively assigned by a comparison with sequences in the available databases and found to be in full agreement with the E. coli O41 O-polysaccharide structure.
Collapse
Affiliation(s)
- Hongfei Zhu
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | | | | | | | | | | |
Collapse
|
12
|
Perepelov AV, Zhu H, Senchenkova SN, Wang Q, Shashkov AS, Wang L, Knirel YA. Structure and gene cluster of the O-antigen of Escherichia coli O19ab. Carbohydr Res 2011; 346:2812-5. [DOI: 10.1016/j.carres.2011.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/17/2011] [Indexed: 10/17/2022]
|
13
|
Wang Q, Perepelov AV, Wen L, Shashkov AS, Wang X, Guo X, Knirel YA, Wang L. Identification of the two glycosyltransferase genes responsible for the difference between Escherichia coli O107 and O117 O-antigens. Glycobiology 2011; 22:281-7. [PMID: 21968437 DOI: 10.1093/glycob/cwr137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The O-antigen is one of the most variable Gram-negative cell constituents, and its specificity is important for bacterial niche adaptation. The observed diversity of O-antigen forms is mainly due to genetic variations in O-antigen gene clusters. Less common is a change of gene function due to nucleotide substitution; a new instance of which is reported here. The O-antigens of E. coli O107 and O117 have similar structures differing only in a single sugar residue (GlcNAc in O107 substituted for Glc in O117). These O-antigen gene clusters contain the same set of 11 genes and share 98.6% overall DNA identity. The function of the genes in the gene clusters have been proposed previously, and a glycosyltransferase gene (wclY) with nucleotide polymorphism in each strain was proposed to transfer different sugars in different strains. To identify the gene responsible for the transfer of different sugars, wclY mutants of E. coli O107 and O117 were constructed, and each mutant was complemented with the wclY genes cloned from both O107 and O117. Structural analysis of the O-antigens of the four recombinant strains identified wclY as a Glc-transferase in O117 and a GlcNAc-transferase in O107. The evolutionary relationship of E. coli O107 and O117 O-antigens is also discussed.
Collapse
Affiliation(s)
- Quan Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Elucidation of the structure and characterization of the gene cluster of the O-antigen of Cronobacter sakazakii G2592, the reference strain of C. sakazakii O7 serotype. Carbohydr Res 2011; 346:1169-72. [DOI: 10.1016/j.carres.2011.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 11/22/2022]
|
15
|
Structure of the O-polysaccharide and characterization of the O-antigen gene cluster of Salmonella enterica O53. Carbohydr Res 2011; 346:373-6. [DOI: 10.1016/j.carres.2010.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/01/2010] [Accepted: 11/03/2010] [Indexed: 11/20/2022]
|
16
|
Perepelov AV, Liu B, Senchenkova SN, Shashkov AS, Guo D, Feng L, Knirel YA, Wang L. Structures of the O-polysaccharides of Salmonella enterica O59 and Escherichia coli O15. Carbohydr Res 2010; 346:381-3. [PMID: 21167479 DOI: 10.1016/j.carres.2010.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/07/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
The O-polysaccharide of Salmonella enterica O59 was studied using sugar analysis and 2D (1)H and (13)C NMR spectroscopy, and the following structure of the tetrasaccharide repeating unit was established: →2)-β-d-Galp-(1→3)-α-d-GlcpNAc-(1→4)-α-l-Rhap-(1→3)-β-d-GlcpNAc-(1→ Accordingly, the O-antigen gene cluster of S. enterica O59 includes all genes necessary for the synthesis of this O-polysaccharide. Earlier, another structure has been reported for the O-polysaccharide of Salmonella arizonae (S. enterica IIIb) O59, which later was found to be identical to that of Citrobacter (Citrobacter braakii) O35 and, in this work, also to the O-polysaccharide of Escherichia coli O15.
Collapse
Affiliation(s)
- Andrei V Perepelov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
A multiplex PCR method to detect 14 Escherichia coli serogroups associated with urinary tract infections. J Microbiol Methods 2010; 82:71-7. [PMID: 20434495 DOI: 10.1016/j.mimet.2010.04.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 04/16/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). E. coli strains belonging to 14 serogroups, including O1, O2, O4, O6, O7, O8, O15, O16, O18, O21, O22, O25, O75 and O83, are the most frequently detected UPEC strains in a diverse range of clinical urine specimens. In the current study, the O-antigen gene clusters of E. coli serogroups O1, O2, O18 and O75 were characterized. A multiplex PCR method based on O-antigen-specific genes was developed for the simultaneous detection of all 14 E. coli serogroups. The multiplex PCR method was shown to be highly specific and reproducible when tested against 186 E. coli and Shigella O-serogroup reference strains, 47 E. coli clinical isolates and 10 strains of other bacterial species. The sensitivity of the multiplex PCR method was analyzed and shown to detect O-antigen-specific genes in samples containing 25 ng of genomic DNA or in mock urine specimens containing 40 colony-forming units (CFUs) per ml. Five urine specimens from hospital were examined using this multiplex PCR method, and the result for one sample was verified by the conventional serotyping methods. The multiplex PCR method developed herein can be used for the detection of relevant E. coli strains from clinical and/or environmental samples, and it is particularly useful for epidemiologic analysis of urine specimens from patients with UTIs.
Collapse
|
18
|
Abstract
The O antigen, consisting of many repeats of an oligosaccharide unit, is part of the lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria. It is on the cell surface and appears to be a major target for both immune system and bacteriophages, and therefore becomes one of the most variable cell constituents. The variability of the O antigen provides the major basis for serotyping schemes of Gram-negative bacteria. The genes responsible for the synthesis of O antigen are usually in a single cluster known as O antigen gene cluster, and their location on the chromosome within a species is generally conserved. Three O antigen biosynthesis pathways including Wzx/Wzy, ABC-transporter and Synthase have been discovered. In this chapter, the traditional and molecular O serotyping schemes are compared, O antigen structures and gene clusters of well-studied species are described, processes for formation and distribution of the variety of O antigens are discussed, and finally, the role of O antigen in bacterial virulence.
Collapse
Affiliation(s)
- Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | | | | |
Collapse
|
19
|
Ren Y, Liu B, Cheng J, Liu F, Feng L, Wang L. Characterization of Escherichia coli O3 and O21 O antigen gene clusters and development of serogroup-specific PCR assays. J Microbiol Methods 2008; 75:329-34. [PMID: 18700154 DOI: 10.1016/j.mimet.2008.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/15/2022]
Abstract
Escherichia coli O3 and O21 are associated with enteroaggregative E. coli (EAEC). EAEC strains are often non-typable using the routine agglutination method due to their aggregative phenotype. Typing of E. coli O3 and O21 may also be impeded by cross-reactions with O152 or O83. In this study, the O antigen gene clusters of E. coli O3 and O21 were characterized, and PCR assays based on O antigen specific genes wzx (encoding O unit flippase) and wzy (encoding O unit polymerase) from each strain were developed. By screening against all 186 known E. coli O serotypes, the PCR assays were shown to be highly specific to O3 and O21 respectively. The sensitivity of the assays was determined to be 1 pg per microl of chromosomal DNA and 2 CFU per 10 g of water samples. The PCR assays were also applied to 658 clinical E. coli isolates, and 100% of detection accuracy was obtained. The PCR assays developed here are suitable for the detection and identification of E. coli O3 and O21 strains in environmental and clinical samples.
Collapse
Affiliation(s)
- Yi Ren
- TEDA School of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China
| | | | | | | | | | | |
Collapse
|
20
|
Fegan N, Barlow RS, Gobius KS. Escherichia coli O157 Somatic Antigen Is Present in an Isolate of E. fergusonii. Curr Microbiol 2006; 52:482-6. [PMID: 16732460 DOI: 10.1007/s00284-005-0447-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 02/06/2006] [Indexed: 11/26/2022]
Abstract
A bacterium that tested positive with antibodies specific for Escherichia coli O157 was isolated from beef during routine screening procedures. The bacterium was identified as E. fergusonii by biochemical testing and partial sequencing of 16S rRNA. The isolate was tested for the presence of genes encoding Shiga toxins, the E. coli attaching and effacing factor, enterohemolysin, and the O157 O antigen. The isolate tested negative for Shiga toxins and other E. coli O157 virulence markers but was found to harbor the genes encoding the O157 antigen. These results suggest genetic transfer of the O antigen gene cluster between E. coli O157:H7 and E. fergusonii.
Collapse
Affiliation(s)
- Narelle Fegan
- Food Science Australia, P. O. Box 3312, Tingalpa DC, 4173, Queensland, Australia.
| | | | | |
Collapse
|
21
|
Abstract
Bacterial metabolism has been studied intensively since the first observations of these 'animalcules' by Leeuwenhoek and their isolation in pure cultures by Pasteur. Metabolic studies have traditionally focused on a small number of model organisms, primarily the Gram negative bacillus Escherichia coli, adapted to artificial culture conditions in the laboratory. Comparatively little is known about the physiology and metabolism of wild microorganisms living in their natural habitats. For approximately 500-1000 species of commensals and symbionts, and a smaller number of pathogenic bacteria, that habitat is the human body. Emerging evidence suggests that the metabolism of bacteria grown in vivo differs profoundly from their metabolism in axenic cultures.
Collapse
Affiliation(s)
- Ernesto J Muñoz-Elías
- Laboratory of Infection Biology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
22
|
Guo H, Lokko K, Zhang Y, Yi W, Wu Z, Wang PG. Overexpression and characterization of Wzz of Escherichia coli O86:H2. Protein Expr Purif 2006; 48:49-55. [PMID: 16603378 DOI: 10.1016/j.pep.2006.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/18/2006] [Accepted: 01/19/2006] [Indexed: 10/25/2022]
Abstract
O-Antigen plays a critical role in the bacterium-host interplay, the chain length is an important factor in O-antigen functions. Wzz protein is responsible for O-antigen chain length regulation, but the mechanism is still unknown. Here, we overexpressed the Wzz of Escherichia coli O86:H2 in wzz mutant O86:H2 strain, the yield can achieve 15 mg/L. The recombinant Wzz was purified to 99% purity in dodecylmaltoside by sequential Ni-affinity chromatography and anion-exchange. Size exclusion chromatography and in vivo cross-linking experiments both showed that Wzz formed tetramer. Furthermore, analysis with circular dichroism revealed that the predominant structural composition in Wzz is alpha-helices, and incubation with O-antigen significantly changed Wzz conformation. The results suggested that Wzz protein can interact with O-antigen.
Collapse
Affiliation(s)
- Hongjie Guo
- Department of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
23
|
Jin B, Newton SMC, Shao Y, Jiang X, Charbit A, Klebba PE. Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol Microbiol 2006; 59:1185-98. [PMID: 16430693 DOI: 10.1111/j.1365-2958.2005.05015.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Listeria monocytogenes is a Gram-positive bacterium that causes severe opportunistic infections in humans and animals. We biochemically characterized, for the first time, the iron uptake processes of this facultative intracellular pathogen, and identified the genetic loci encoding two of its membrane iron transporters. Strain EGD-e used iron complexes of hydroxamates (ferrichrome and ferrichrome A, ferrioxamine B), catecholates (ferric enterobactin, ferric corynebactin) and eukaryotic binding proteins (transferrin, lactoferrin, ferritin, haemoglobin). Quantitative determinations showed 10-100-fold lower affinity for ferric siderophores (Km approximately 1-10 nM) than Gram-negative bacteria, and generally lower uptake rates. Vmax for [59Fe]-enterobactin (0.15 pMol per 10(9) cells per minute) was 400-fold lower than that of Escherichia coli. For [59Fe]-corynebactin, Vmax was also low (1.2 pMol per 10(9) cells per minute), but EGD-e transported [59Fe]-apoferrichrome similarly to E. coli (Vmax=24 pMol per 10(9) cells per minute). L. monocytogenes encodes potential Fur-regulated iron transporters at 2.031 Mb (the fur-fhu region), 2.184 Mb (the feo region), 2.27 Mb (the srtB region) and 2.499 Mb (designated hupDGC region). Chromosomal deletions in the fur-fhu and hupDGC regions diminished iron uptake from ferric hydroxamates and haemin/haemoglobin respectively. In the former locus, deletion of fhuD (lmo1959) or fhuC (lmo1960) strongly reduced [59Fe]-apoferrichrome uptake. Deletion of hupC (lmo2429) eliminated the uptake of haemin and haemoglobin, and decreased the virulence of L. monocytogenes 50-fold in mice. Elimination of srtB region genes (Deltalmo2185, Deltalmo2186, Deltalmo2183), both sortase structural genes (DeltasrtB, DeltasrtA, DeltasrtAB), fur and feoB did not impair iron transport. However, deletion of bacterioferritin (Deltafri, lmo943; 0.97 Mb) decreased growth and altered iron uptake: Vmax of [59Fe]-corynebactin transport tripled in this strain, whereas that of [59Fe]-apoferrichrome decreased 20-fold.
Collapse
Affiliation(s)
- Bo Jin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | | | | | |
Collapse
|
24
|
Feng L, Senchenkova SN, Wang W, Shashkov AS, Liu B, Shevelev SD, Liu D, Knirel YA, Wang L. Structural and genetic characterization of the Shigella boydii type 18 O antigen. Gene 2005; 355:79-86. [PMID: 16055280 DOI: 10.1016/j.gene.2005.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/07/2005] [Accepted: 06/07/2005] [Indexed: 11/23/2022]
Abstract
Shigella strains are important human pathogens and are normally identified by their O antigens. O antigen is an essential part of the lipopolysaccharide present in the outer membrane of Gram-negative bacteria and plays a role in pathogenicity. Structural and genetic organization of the Shigella boydii type 18 O antigen was investigated. As judged by sugar and methylation analyses and NMR spectroscopy data, the O antigen has a linear pentasaccharide repeating unit (O unit), which consists of three L-rhamnose residues, and one residue each of D-galacturonic acid (D-GalA) and N-acetylgalactosamine (D-GalNAc), and the following structure of the O unit was established. -->3)-beta-L-Rhap-(1-->4)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->2)-alpha-D-GalpA-(1-->3)-alpha-D-GalpNAc-(1--> The O antigen gene cluster of S. boydii type 18, which contains nine open reading frames (ORFs), was found between galF and gnd. Based on homology, all of the ORFs were identified as O antigen synthesis genes, involved in the synthesis of rhamnose, transfer of sugars, and processing of O unit. Genes specific for S. boydii type 18 were identified, which can be potentially used for the development of a PCR-based assay for the identification and detection of this strain.
Collapse
Affiliation(s)
- Lu Feng
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Guo H, Feng L, Tao J, Zhang C, Wang L. Identification of Escherichia coli O172 O-antigen gene cluster and development of a serogroup-specific PCR assay. J Appl Microbiol 2004; 97:181-90. [PMID: 15186455 DOI: 10.1111/j.1365-2672.2004.02305.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To characterize the locus for O-antigen biosynthesis from Escherichia coli O172 type strain and to develop a rapid, specific and sensitive PCR-based method for identification and detection of E. coli O172. METHODS AND RESULTS DNA of O-antigen gene cluster of E. coli O172 was amplified by long-range PCR method using primers based on housekeeping genes galF and gnd Shot gun bank was constructed and high quality sequencing was performed. The putative genes for synthesis of UDP-FucNAc, O-unit flippase, O-antigen polymerase and glycosyltransferases were assigned by the homology search. The evolutionary relationship between O-antigen gene clusters of E. coli O172 and E. coli O26 is shown by sequence comparison. Genes specific to E. coli O172 strains were identified by PCR assays using primers based on genes for O-unit flippase, O-antigen polymerase and glycosyltransferases. The specificity of PCR assays was tested using all E. coli and Shigella O-antigen type strains, as well as 24 clinical E. coli isolates. The sensitivity of PCR assays was determined, and the detection limits were 1 pg microl(-1) chromosomal DNA, 0.2 CFU g(-1) pork and 0.2 CFU ml(-1) water. The total time required from beginning to end of the procedure was within 16 h. CONCLUSION The O-antigen gene cluster of E. coli O172 was identified and PCR assays based on O-antigen specific genes showed high specificity and sensitivity. SIGNIFICANCE AND IMPACT OF THE STUDY An O-antigen gene cluster was identified by sequencing. The specific genes were determined for E. coli O172. The sensitivity of O-antigen specific PCR assay was tested. Although Shiga toxin-producing O172 strains were not yet isolated from clinical specimens, they may emerge as pathogens.
Collapse
Affiliation(s)
- H Guo
- TEDA School of Biological Sciences and Biotechnology, Tianjin State Laboratory of Microbial Functional Genomics, Nankai University, TEDA, Tianjin, China
| | | | | | | | | |
Collapse
|
26
|
Feng L, Tao J, Guo H, Xu J, Li Y, Rezwan F, Reeves P, Wang L. Structure of the Shigella dysenteriae 7 O antigen gene cluster and identification of its antigen specific genes. Microb Pathog 2004; 36:109-15. [PMID: 14687563 DOI: 10.1016/j.micpath.2003.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Shigella strains are human pathogens. The O antigen gene cluster of Shigella dysenteriae O7 was sequenced and analyzed. It contains genes for synthesis of nucleotide sugars including UDP-2-acetamido-2-deoxy-D-galacturonamide, UDP-2-acetamido-2-deoxy-D-galacturonic acid and dTDP-4-amino-4,6-dideoxy-D-glucose. Also found in the gene cluster are genes encoding O unit flippase, O antigen polymerase and sugar transferases. The Escherichia coli O121 O antigen, which is present in an important Shiga toxin-producing strain, has the same structure as that of S. dysenteriae O7, and we found that the gene clusters also had the same genes and organization. Four genes specific to S. dysenteriae O7 and E. coli O121 were identified by PCR screening against representatives of 186 E. coli (including Shigella) O serotypes. E. coli O121 and S. dysenteriae O7 isolates can be distinguished by PCR of the H antigen fliC gene.
Collapse
Affiliation(s)
- Lu Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|