1
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
2
|
Gonçalves CC, Sharon I, Schmeing TM, Ramos CHI, Young JC. The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70. Sci Rep 2021; 11:17139. [PMID: 34429462 PMCID: PMC8384840 DOI: 10.1038/s41598-021-96518-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/11/2021] [Indexed: 01/22/2023] Open
Abstract
In human cells under stress conditions, misfolded polypeptides can form potentially cytotoxic insoluble aggregates. To eliminate aggregates, the HSP70 chaperone machinery extracts and resolubilizes polypeptides for triage to refolding or degradation. Yeast and bacterial chaperones of the small heat-shock protein (sHSP) family can bind substrates at early stages of misfolding, during the aggregation process. The co-aggregated sHSPs then facilitate downstream disaggregation by HSP70. Because it is unknown whether a human sHSP has this activity, we investigated the disaggregation role of human HSPB1. HSPB1 co-aggregated with unfolded protein substrates, firefly luciferase and mammalian lactate dehydrogenase. The co-aggregates formed with HSPB1 were smaller and more regularly shaped than those formed in its absence. Importantly, co-aggregation promoted the efficient disaggregation and refolding of the substrates, led by HSP70. HSPB1 itself was also extracted during disaggregation, and its homo-oligomerization ability was not required. Therefore, we propose that a human sHSP is an integral part of the chaperone network for protein disaggregation.
Collapse
Affiliation(s)
- Conrado C Gonçalves
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Room 900, Montreal, QC, H3G 1Y6, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Room 457, Montreal, QC, H3G 0B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler, Room 457, Montreal, QC, H3G 0B1, Canada
| | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Jason C Young
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Room 900, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
3
|
Akin S, Naito H, Ogura Y, Ichinoseki-Sekine N, Kurosaka M, Kakigi R, Demirel HA. Short-term treadmill exercise in a cold environment does not induce adrenal Hsp72 and Hsp25 expression. J Physiol Sci 2017; 67:407-413. [PMID: 27470130 PMCID: PMC10717108 DOI: 10.1007/s12576-016-0473-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
Abstract
Heat shock proteins (Hsps) have a critical role in maintaining cellular homeostasis and in protecting cells from a range of acute and chronic stressful conditions. Treadmill running exercise results in increased Hsp72 and Hsp25 levels in various tissues and heat production during exercise has been shown to be the main factor for the increased levels of Hsp72 in myocardium. Since the adrenal gland plays a vital role in general response to stress, regulation of Hsps in adrenal glands following stressful events seems to be critical for controlling the whole-body stress response appropriately. This study tested the hypothesis of whether elevation of temperature is solely responsible for exercise-induced adrenal Hsp72 and Hsp25 expression. Female Sprague-Dawley rats (3 months old) were randomly assigned to either a sedentary control group or one of two treadmill-running groups: a cold exercise group run in a cold room at 4 °C (CE), and a warm exercise group run at 25 °C temperature (WE). Animals were run 60 min a day at 30 m min-1 speed for 4 consecutive days following adaptation to treadmill exercise. Exercise resulted in a significant elevation of body temperature only in the WE group (p < 0.05). Adrenal Hsp72 and Hsp25 levels were significantly higher in the WE group compare to the other groups (p < 0.05). These data demonstrated that exercise-related elevations of body temperature could be the only factor for the inductions of adrenal Hsp72 and Hsp25 expression.
Collapse
Affiliation(s)
- Senay Akin
- Division of Exercise and Sport Physiology, Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Beytepe, 06800, Ankara, Turkey.
| | - Hisashi Naito
- School of Health and Sports Science, Juntendo University, Inbamura, Chiba, Japan
| | - Yuji Ogura
- School of Health and Sports Science, Juntendo University, Inbamura, Chiba, Japan
| | | | - Mitsutoshi Kurosaka
- School of Health and Sports Science, Juntendo University, Inbamura, Chiba, Japan
| | - Ryo Kakigi
- School of Health and Sports Science, Juntendo University, Inbamura, Chiba, Japan
| | - Haydar A Demirel
- Division of Exercise and Sport Physiology, Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
4
|
Yan G, Li X, Cheng X, Peng Y, Long B, Fan Q, Wang Z, Zheng Z, Shi M, Yan X. Proteomic profiling reveals oxidative phosphorylation pathway is suppressed in longissimus dorsi muscle of weaned piglets fed low-protein diet supplemented with limiting amino acids. Int J Biochem Cell Biol 2016; 79:288-297. [DOI: 10.1016/j.biocel.2016.08.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 08/15/2016] [Accepted: 08/29/2016] [Indexed: 01/02/2023]
|
5
|
Tsujimoto M, Tokuda H, Kuroyanagi G, Yamamoto N, Kainuma S, Matsushima-Nishiwaki R, Onuma T, Iida Y, Kojima A, Sawada S, Doi T, Enomoto Y, Tanabe K, Akamatsu S, Iida H, Ogura S, Otsuka T, Kozawa O, Iwama T. AICAR reduces the collagen-stimulated secretion of PDGF-AB and release of soluble CD40 ligand from human platelets: Suppression of HSP27 phosphorylation via p44/p42 MAP kinase. Exp Ther Med 2016; 12:1107-1112. [PMID: 27446328 DOI: 10.3892/etm.2016.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that collagen-induced phosphorylation of heat shock protein (HSP) 27 via p44/p42 mitogen-activated protein (MAP) kinase in human platelets is sufficient to induce the secretion of platelet-derived growth factor (PDGF)-AB and the release of soluble cluster of differentiation 40 ligand (sCD40L). Adenosine monophosphate-activated protein kinase (AMPK), which is known to regulate energy homeostasis, has a crucial role as an energy sensor in various eukaryotic cells. The present study investigated the effects of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5'-monophosphate (AICAR), which is an activator of AMPK, on the collagen-induced activation of human platelets. It was demonstrated that AICAR dose-dependently reduced collagen-stimulated platelet aggregation up to 1.0 µM. Analysis of the size of platelet aggregates demonstrated that AICAR decreased the ratio of large aggregates (50-70 µm), whereas the ratio of small aggregates (9-25 µm) was increased by AICAR administration. AICAR markedly attenuated the phosphorylation levels of p44/p42 MAP kinase and HSP27, which are induced by collagen. Furthermore, AICAR significantly decreased the secretion of PDGF-AB and the collagen-induced release of sCD40L. These results indicated that AICAR-activated AMPK may reduce the secretion of PDGF-AB and the collagen-induced release of sCD40L by inhibiting HSP27 phosphorylation via p44/p42 MAP kinase in human platelets.
Collapse
Affiliation(s)
- Masanori Tsujimoto
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Clinical Laboratory, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | - Naohiro Yamamoto
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | - Shingo Kainuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | | | - Takashi Onuma
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuko Iida
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akiko Kojima
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; Department of Anesthesiology and Critical Care Medicine, Matsunami General Hospital, Gifu 501-6062, Japan
| | - Shigenobu Sawada
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Tomoaki Doi
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yukiko Enomoto
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shigeru Akamatsu
- Department of Anesthesiology and Critical Care Medicine, Matsunami General Hospital, Gifu 501-6062, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shinji Ogura
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8603, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Toru Iwama
- Department of Neurosugery, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
6
|
Birth weight alters the response to postnatal high-fat diet-induced changes in meat quality traits and skeletal muscle proteome of pigs. Br J Nutr 2014; 111:1738-47. [DOI: 10.1017/s0007114513004431] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Low birth weight (LBW) exerts persistent effects on the growth and development of offspring. The present study was conducted to test the hypothesis that LBW alters the response of pigs to high-fat (HF) diet-induced changes in meat quality and skeletal muscle proteome. Normal-birth weight (NBW) and LBW piglets were fed a control diet or a HF diet from weaning to slaughter at 110 kg body weight. Most of the meat quality traits were influenced by LBW. Meat quality analysis revealed that LBW piglets had a greater ability to deposit intramuscular lipids than their heavier littermates when fed a HF diet. Increased shear force, lower pH45min and drip loss were observed in the skeletal muscle of LBW piglets compared with NBW piglets. Proteomic analysis revealed forty-six differentially expressed proteins in the skeletal muscle of LBW and NBW piglets fed the control diet or HF diet. These proteins play a central role in cell structure and motility, glucose and energy metabolism, lipid metabolism, and cellular apoptosis, as well as stress response. Of particular interest is the finding that LBW altered the response to HF diet-induced changes in the expression of proteins related to stress response (heat shock protein) and glucose and energy metabolism (pyruvate kinase, phosphoglycerate mutase, enolase and triosephosphate isomerase). Taken together, our findings revealed that the HF diet-induced changes in the expression of glucose and energy metabolism-related proteins varied between NBW and LBW piglets, which provides a possible mechanism to explain higher intramuscular fat store in LBW pigs when fed a HF diet.
Collapse
|
7
|
Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 2012; 44:1622-31. [PMID: 22521623 DOI: 10.1016/j.biocel.2012.04.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/17/2023]
Abstract
Hsp27, αB-crystallin and HSP22 are ubiquitous small heat shock proteins (sHsp) whose expression is induced in response to a wide variety of unfavorable physiological and environmental conditions. These sHsp protect cells from otherwise lethal conditions mainly by their involvement in cell death pathways such as necrosis, apoptosis or autophagy. At a molecular level, the mechanisms accounting for sHsp functions in cell death are (1) prevention of denatured proteins aggregation, (2) regulation of caspase activity, (3) regulation of the intracellular redox state, (4) function in actin polymerization and cytoskeleton integrity and (5) proteasome-mediated degradation of selected proteins. In cancer cells, these sHsp are often overexpressed and associated with increased tumorigenicity, cancer cells metastatic potential and resistance to chemotherapy. Altogether, these properties suggest that Hsp27, αB-crystallin and Hsp22 are appropriate targets for modulating cell death pathways. In the present, we briefly review recent reports showing molecular evidence of cell death regulation by these sHsp and co-chaperones. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Julie Acunzo
- Centre de Recherche en Cancérologie de Marseille, UMR1068 Inserm, Institut Paoli-Calmette, Aix-Marseille Univ, Marseille, France
| | | | | |
Collapse
|
8
|
White BG, MacPhee DJ. Distension of the uterus induces HspB1 expression in rat uterine smooth muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1418-26. [DOI: 10.1152/ajpregu.00272.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The uterine musculature, or myometrium, demonstrates tremendous plasticity during pregnancy under the influences of the endocrine environment and mechanical stresses. Expression of the small stress protein heat shock protein B1 (HspB1) has been reported to increase dramatically during late pregnancy, a period marked by myometrial hypertrophy caused by fetal growth-induced uterine distension. Thus, using unilaterally pregnant rat models and ovariectomized nonpregnant rats with uteri containing laminaria tents to induce uterine distension, we examined the effect of uterine distension on myometrial HspB1 expression. In unilaterally pregnant rats, HspB1 mRNA and Ser15-phosphorylated HspB1 (pSer15 HspB1) protein expression were significantly elevated in distended gravid uterine horns at days 19 and 23 (labor) of gestation compared with nongravid horns. Similarly, pSer15 HspB1 protein in situ was only readily detectable in the distended horns compared with the nongravid horns at days 19 and 23; however, pSer15 HspB1 was primarily detectable in situ at day 19 in membrane-associated regions, while it had primarily a cytoplasmic localization in myometrial cells at day 23. HspB1 mRNA and pSer15 HspB1 protein expression were also markedly increased in ovariectomized nonpregnant rat myometrium distended for 24 h with laminaria tents compared with empty horns. Therefore, uterine distension plays a major role in the stimulation of myometrial HspB1 expression, and increased expression of this small stress protein could be a mechanoadaptive response to the increasing uterine distension that occurs during pregnancy.
Collapse
Affiliation(s)
- B. G. White
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - D. J. MacPhee
- Division of Biomedical Sciences, Health Sciences Centre, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
9
|
Tanabe K, Matsushima-Nishiwaki R, Dohi S, Kozawa O. Phosphorylation status of heat shock protein 27 regulates the interleukin-1β-induced interleukin-6 synthesis in C6 glioma cells. Neuroscience 2010; 170:1028-34. [PMID: 20732391 DOI: 10.1016/j.neuroscience.2010.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/09/2010] [Indexed: 12/13/2022]
Abstract
Heat shock protein 27 (HSP27), a low-molecular-weight HSP, is recognized as a molecular chaperone. In response to various stimuli, HSP27 expression is induced in the CNS. However, the exact roles of HSP27 in the CNS have not yet been clarified. It has been reported that interleukin (IL)-1β stimulates IL-6 synthesis in C6 glioma cells. In the present study, we investigated the role of HSP27 in the IL-1β-induced IL-6 synthesis in C6 cells. IL-1β alone did not affect the levels of HSP27. The IL-1β-induced IL-6 release in HSP27-downregulated C6 cells were enhanced compared with those in control siRNA-transfected cells. On the other hand, the IL-1β-induced IL-6 release was significantly enhanced in C6 cells transfected with HSP27 than those in control cells in time- and dose-dependent manner. The IL-1β-induced IL-6 release and the mRNA expression were markedly suppressed in C6 cells transfected with phosphorylated HSP27, while those in the cells transfected with unphosphorylated HSP27 were enhanced. In conclusion, these results strongly suggest that phosphorylated status of HSP27 has a switching role in the IL-1β-induced IL-6 synthesis in C6 glioma cells.
Collapse
Affiliation(s)
- K Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
10
|
Tanabe K, Takai S, Matsushima-Nishiwaki R, Kato K, Dohi S, Kozawa O. Alpha2 adrenoreceptor agonist regulates protein kinase C-induced heat shock protein 27 phosphorylation in C6 glioma cells. J Neurochem 2008; 106:519-28. [PMID: 18384648 DOI: 10.1111/j.1471-4159.2008.05389.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dexmedetomidine (Dexmd), a potent and highly specific alpha(2) adrenoreceptor agonist, is an efficient therapeutic agent for sedation. Dexmd has been recently reported to have a neuroprotective effect. Heat shock protein (HSP) 27, a low-molecular weight HSP has been shown to be expressed following cerebral ischemia in astrocytes but not in neurons. HSP27 expression is involved in ischemic tolerance of the brain. This study investigated the effect of Dexmd on HSP27 in rat C6 glioma cells. 12-O-tetradecanoylphorbol-13-actate (TPA), a direct activator of protein kinase C (PKC), stimulated the phosphorylation of HSP27 at Ser82, but not Ser15 in a time-dependent manner. Prostaglandin (PG) E(1) or PGE(2) which activates the adenylyl cyclase-cAMP system as well as forskolin and dibutyryl-cAMP, suppressed the TPA-induced phosphorylation of HSP27. Dexmd reversed the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system. Therefore, these results strongly suggest that Dexmd reverses the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system activation through the inhibition of its system in C6 cells. alpha(2) Adrenoreceptor agonists may therefore show a neuroprotective effect through the modification of HSP27 phosphorylation induced by PKC activation.
Collapse
Affiliation(s)
- Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Marin-Vinader L, Shin C, Onnekink C, Manley JL, Lubsen NH. Hsp27 enhances recovery of splicing as well as rephosphorylation of SRp38 after heat shock. Mol Biol Cell 2005; 17:886-94. [PMID: 16339078 PMCID: PMC1356597 DOI: 10.1091/mbc.e05-07-0596] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A heat stress causes a rapid inhibition of splicing. Exogenous expression of Hsp27 did not prevent that inhibition but enhanced the recovery of splicing afterward. Another small heat shock protein, alphaB-crystallin, had no effect. Hsp27, but not alphaB-crystallin, also hastened rephosphorylation of SRp38-dephosphorylated a potent inhibitor of splicing-after a heat shock, although it did not prevent dephosphorylation by a heat shock. The effect of Hsp27 on rephosphorylation of SRp38 required phosphorylatable Hsp27. A Hsp90 client protein was required for the effect of Hsp27 on recovery of spicing and on rephosphorylation of SRp38. Raising the Hsp70 level by either a pre-heat shock or by exogenous expression had no effect on either dephosphorylation of SRp38 during heat shock or rephosphorylation after heat shock. The phosphatase inhibitor calyculin A prevented dephosphorylation of SRp38 during a heat shock and caused complete rephosphorylation of SRp38 after a heat shock, indicating that cells recovering from a heat shock are not deficient in kinase activity. Together our data show that the activity of Hsp27 in restoring splicing is not due to a general thermoprotective effect of Hsp27, but that Hsp27 is an active participant in the (de)phosphorylation cascade controlling the activity of the splicing regulator SRp38.
Collapse
Affiliation(s)
- Laura Marin-Vinader
- Department of Biochemistry, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC. Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 2005; 280:37139-48. [PMID: 16129694 DOI: 10.1074/jbc.m504106200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation modulates the functioning of alphaB-crystallin as a molecular chaperone. We here explore the role of phosphorylation in the nuclear import and cellular localization of alphaB-crystallin in HeLa cells. Inhibition of nuclear export demonstrated that phosphorylation of alphaB-crystallin is required for import into the nucleus. As revealed by mutant analysis, phosphorylation at Ser-59 is crucial for nuclear import, and phosphorylation at Ser-45 is required for speckle localization. Co-immunoprecipitation experiments suggested that the import of alphaB-crystallin is possibly regulated by its phosphorylation-dependent interaction with the survival motor neuron (SMN) protein, an important factor in small nuclear ribonucleoprotein nuclear import and assembly. This interaction was supported by co-localization of endogenous phosphorylated alphaB-crystallin with SMN in nuclear structures. The cardiomyopathy-causing alphaB-crystallin mutant R120G was found to be excessively phosphorylated, which disturbed SMN interaction and nuclear import, and resulted in the formation of cytoplasmic inclusions. Like for other protein aggregation disorders, hyperphosphorylation appears as an important aspect of the pathogenicity of alphaB-crystallin R120G.
Collapse
Affiliation(s)
- John den Engelsman
- Department of Biochemistry 161, Nijmegen Center for Molecular Life Sciences, Radboud University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Chowdary T, Raman B, Ramakrishna T, Rao C. Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 2004; 381:379-87. [PMID: 15030316 PMCID: PMC1133843 DOI: 10.1042/bj20031958] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/05/2004] [Accepted: 03/19/2004] [Indexed: 11/17/2022]
Abstract
A newly identified 22 kDa protein that interacts with Hsp27 (heat-shock protein 27) was shown to possess the characteristic alpha-crystallin domain, hence named Hsp22, and categorized as a member of the sHsp (small Hsp) family. Independent studies from different laboratories reported the protein with different names such as Hsp22, H11 kinase, E2IG1 and HspB8. We have identified, on the basis of the nucleotide sequence analysis, putative heat-shock factor 1 binding sites upstream of the Hsp22 translation start site. We demonstrate that indeed Hsp22 is heat-inducible. We show, in vitro, chaperone-like activity of Hsp22 in preventing dithiothreitol-induced aggregation of insulin and thermal aggregation of citrate synthase. We have cloned rat Hsp22, overexpressed and purified the protein to homogeneity and studied its structural and functional aspects. We find that Hsp22 fragments on storage. MS analysis of fragments suggests that the fragmentation might be due to the presence of labile peptide bonds. We have established conditions to improve its stability. Far-UV CD indicates a randomly coiled structure for Hsp22. Quaternary structure analyses by glycerol density-gradient centrifugation and gel filtration chromatography show that Hsp22 exists as a monomer in vitro, unlike other members of the sHsp family. Hsp22 exhibits significantly exposed hydrophobic surfaces as reported by bis-8-anilinonaphthalene-l-sulphonic acid fluorescence. We find that the chaperone-like activity is temperature dependent. Thus Hsp22 appears to be a true member of the sHsp family, which exists as a monomer in vitro and exhibits chaperone-like activity.
Collapse
Affiliation(s)
| | | | | | - Chintalagiri Mohan Rao
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
14
|
den Engelsman J, Bennink EJ, Doerwald L, Onnekink C, Wunderink L, Andley UP, Kato K, de Jong WW, Boelens WC. Mimicking phosphorylation of the small heat-shock protein alphaB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. ACTA ACUST UNITED AC 2004; 271:4195-203. [PMID: 15511225 DOI: 10.1111/j.1432-1033.2004.04359.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mammalian small heat shock protein alphaB-crystallin can be phosphorylated at three different sites, Ser19, Ser45 and Ser59. We compared the intracellular distribution of wild-type, nonphosphorylatable and all possible pseudophosphorylation mutants of alphaB-crystallin by immunoblot and immunocytochemical analyses of stable and transiently transfected cells. We observed that pseudophosphorylation at two (especially S19D/S45D) or all three (S19D/S45D/S59D) sites induced the partial translocation of alphaB-crystallin from the detergent-soluble to the detergent-insoluble fraction. Double immunofluorescence studies showed that the pseudophosphorylation mutants localized in nuclear speckles containing the splicing factor SC35. The alphaB-crystallin mutants in these speckles were resistant to mild detergent treatment, and also to DNase I or RNase A digestion, indicating a stable interaction with one or more speckle proteins, not dependent on intact DNA or RNA. We further found that FBX4, an adaptor protein of the ubiquitin-protein isopeptide ligase SKP1/CUL1/F-box known to interact with pseudophosphorylated alphaB-crystallin, was also recruited to SC35 speckles when cotransfected with the pseudophosphorylation mutants. Because SC35 speckles also react with an antibody against alphaB-crystallin endogenously phosphorylated at Ser45, our findings suggest that alphaB-crystallin has a phosphorylation-dependent role in the ubiquitination of a component of SC35 speckles.
Collapse
Affiliation(s)
- John den Engelsman
- Department of Biochemistry 161, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bai F, Xi J, Higashikubo R, Andley UP. A comparative analysis of αA- and αB-crystallin expression during the cell cycle in primary mouse lens epithelial cultures. Exp Eye Res 2004; 79:795-805. [PMID: 15642316 DOI: 10.1016/j.exer.2004.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 05/07/2004] [Indexed: 11/27/2022]
Abstract
AlphaA- and alphaB-crystallins are small heat shock proteins and molecular chaperones that prevent non-specific aggregation of denaturing proteins. Previous work in our laboratory has shown that lens epithelial cells derived from alphaA-/- mice exhibit slower growth, whereas alphaB-/- lens epithelial cells hyperproliferate at a higher rate in culture [Andley et al., J. Biol. Chem. 273 (1998) 31252; FASEB J. 15 (2001) 221]. Although both have been implicated in apoptosis and cell proliferation, direct analysis of their expression during the cell cycle has not been investigated. This study was undertaken to define the expression levels of alphaA and alphaB-crystallins during the cell cycle. Primary lens epithelial cell cultures derived from wild type mice were synchronized by serum starvation, and pulsed with bromodeoxyuridine (BrdU) at different times after re-stimulation with serum. Dual parameter flow cytometric studies with BrdU and propidium iodide (PI)-labeled cells were performed. Cells entered S phase 14 hr after serum re-stimulation. The duration of the S phase was 6 hr, and the total cell cycle transit time was between 24-27 hr. Enhanced expression of cyclin A, a protein essential for DNA synthesis was used as an additional marker to define the initiation of the S phase. Immunoblotting analysis demonstrated that the expression of alphaA and alphaB-crystallin was up to 10-fold higher in cells synchronized in G0 phase than in G1 phase. The levels of the proteins increased three-fold again as the cells entered the S phase and progressed to mitosis, but did not rise to the levels observed in G0 phase. This increase in expression of alphaA-crystallin resulted in part from enhanced synthesis during the S phase, as shown by an increase in [35S]methionine-labeling and immunoprecipitation of the radiolabeled alphaA-crystallin. The results were further confirmed by flow cytometric analysis using DNA content and alphaA-crystallin expression. The increase in alphaB-crystallin in S phase was paralleled by an increase in gene expression as shown by real-time RT-PCR analysis. These results demonstrate for the first time that in lens epithelial cells, alphaA and alphaB-crystallin levels are modulated during the cell cycle. Since the absence of alphaA and alphaB- crystallin in lens epithelial cells has been associated with disturbance of the tubulin cytoskeleton during mitosis, and with increased cell death or genomic instability, our results indicating that the alphaA- and alphaB-crystallin expression increases prior to mitosis are significant. The differential expression of these crystallins in the cell cycle may be important for optimal lens epithelial growth and lens transparency.
Collapse
Affiliation(s)
- Fang Bai
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8096, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
16
|
Doerwald L, Onnekink C, van Genesen ST, de Jong WW, Lubsen NH. Translational thermotolerance provided by small heat shock proteins is limited to cap-dependent initiation and inhibited by 2-aminopurine. J Biol Chem 2003; 278:49743-50. [PMID: 14523008 DOI: 10.1074/jbc.m302914200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock results in inhibition of general protein synthesis. In thermotolerant cells, protein synthesis is still rapidly inhibited by heat stress, but protein synthesis recovers faster than in naive heat-shocked cells, a phenomenon known as translational thermotolerance. Here we investigate the effect of overexpressing a single heat shock protein on cap-dependent and cap-independent initiation of translation during recovery from a heat shock. When overexpressing alphaB-crystallin or Hsp27, cap-dependent initiation of translation was protected but no effect was seen on cap-independent initiation of translation. When Hsp70 was overexpressed however, both cap-dependent and -independent translation were protected. This finding indicates a difference in the mechanism of protection mediated by small or large heat shock proteins. Phosphorylation of alphaB-crystallin and Hsp27 is known to significantly decrease their chaperone activity; therefore, we tested phosphorylation mutants of these proteins in this system. AlphaB-crystallin needs to be in its non-phosphorylated state to give protection, whereas phosphorylated Hsp27 is more potent in protection than the unphosphorylatable form. This indicates that chaperone activity is not a prerequisite for protection of translation by small heat shock proteins after heat shock. Furthermore, we show that in the presence of 2-aminopurine, an inhibitor of kinases, among which is double-stranded RNA-activated kinase, the protective effect of overexpressing alphaB-crystallin is abolished. The synthesis of the endogenous Hsps induced by the heat shock to test for thermotolerance is also blocked by 2-aminopurine. Most likely the protective effect of alphaB-crystallin requires synthesis of the endogenous heat shock proteins. Translational thermotolerance would then be a co-operative effect of different heat shock proteins.
Collapse
Affiliation(s)
- Linda Doerwald
- Department of Biochemistry, Faculty of Science, University of Nijmegen, 6500HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Datta B, Datta R. Mutation at the acidic residue-rich domain of eukaryotic initiation factor 2 (eIF2alpha)-associated glycoprotein p67 increases the protection of eIF2alpha phosphorylation during heat shock. Arch Biochem Biophys 2003; 413:116-22. [PMID: 12706348 DOI: 10.1016/s0003-9861(03)00092-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eukaryotic initiation factor 2 (eIF2)-associated glycoprotein p67 protects eIF2alpha phosphorylation from kinases. The N-terminal lysine-rich domains increase this activity and the acidic residue-rich domain inhibits it. Conserved amino acid residues D251, D262, E364, and E459 are involved in this inhibition. During heat shock, the overall protein synthesis rate decreases due to the increased levels of eIF2alpha phosphorylation. In this study, we examined whether the above inhibition is also found during heat shock. Indeed, the acidic residue-rich domain mutant (D6/2) showed a decreased level of eIF2alpha phosphorylation, and its second-site alanine substitutions at D251, D262, and E459 reversed this effect, whereas second-site alanine substitution at H331 and E364 residues further augmented it. A high-molecular-weight phosphoprotein and at least two faster-migrating phosphoproteins were detected by the monospecific polyclonal antibody against eIF2alpha(P) form in rat tumor hepatoma cells constitutively expressing the double mutant D6/2+D251A. Although the levels of p67 mutants were unaffected during heat shock, those of p67 and p67-deactivating enzyme varied. Furthermore, the overall rate of protein synthesis correlated with the level of eIF2alpha phosphorylation. Taken together, these results suggest that the lysine-rich domains and conserved amino acid residues of p67 are involved in the regulation of eIF2alpha phosphorylation during heat shock.
Collapse
Affiliation(s)
- Bansidhar Datta
- Department of Chemistry, Kent State University, OH 44242, USA.
| | | |
Collapse
|
18
|
Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JAM, de Jong WW. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaperones 2003; 8:53-61. [PMID: 12820654 PMCID: PMC514853 DOI: 10.1379/1466-1268(2003)8<53:thgecs>2.0.co;2] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To obtain an inventory of all human genes that code for alpha-crystallin-related small heat shock proteins (sHsps), the databases available from the public International Human Genome Sequencing Consortium (IHGSC) and the private Celera human genome project were exhaustively searched. Using the human Hsp27 protein sequence as a query in the protein databases, which are derived from the predicted genes in the human genome, 10 sHsp-like proteins were retrieved, including Hsp27 itself. Repeating the search procedure with all 10 proteins and with a variety of more distantly related animal sHsps, no further human sHsps were detected, as was the case when searches were performed at deoxyribonucleic acid level. The 10 retrieved proteins comprised the 9 earlier recognized human sHsps (Hsp27/HspB1, HspB2, HspB3, alphaA-crystallin/HspB4, alphaB-crystallin/HspB5, Hsp20/HspB6, cvHsp/HspB7, H11/HspB8, and HspB9) and a sperm tail protein known since 1993 as outer dense fiber protein 1 (ODF1). Although this latter protein probably serves a structural role and has a high cysteine content (14%), it clearly contains an alpha-crystallin domain that is characteristic for sHsps. ODF1 can as such be designated as HspB10. The expression of all 10 human sHsp genes was confirmed by expressed sequence tag (EST) searches. For Hsp27/HspB1, 2 retropseudogenes were detected. The HspB1-10 genes are dispersed over 9 chromosomes, reflecting their ancient origin. Two of the genes (HspB3 and HspB9) are intronless, and the others have 1 or 2 introns at various positions. The transcripts of several sHsp genes, notably HspB7, display low levels of alternative splicing, as supported by EST evidence, which may result in minor amounts of isoforms at the protein level.
Collapse
Affiliation(s)
- Guido Kappé
- Department of Biochemistry, 161 NCMLS, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|