1
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
2
|
ZHANG HONGWEI, CUI ZHONGYI, LUO GUANGWEI, ZHANG JIAHENG, MA TAO, HU NA, CUI TIANPEN. Ghrelin attenuates intestinal ischemia/reperfusion injury in mice by activating the mTOR signaling pathway. Int J Mol Med 2013; 32:851-9. [DOI: 10.3892/ijmm.2013.1452] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/15/2013] [Indexed: 11/06/2022] Open
|
3
|
Chen S, Wang R, Li QF, Tang DD. Abl knockout differentially affects p130 Crk-associated substrate, vinculin, and paxillin in blood vessels of mice. Am J Physiol Heart Circ Physiol 2009; 297:H533-9. [PMID: 19542491 DOI: 10.1152/ajpheart.00237.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin polymerization has recently emerged as an important cellular process that regulates smooth muscle contraction. Abelson tyrosine kinase (Abl) has been implicated in the regulation of actin dynamics and force development in vascular smooth muscle. In the present study, the systolic blood pressure was lower in Abl(-/-) knockout mice compared with wild-type mice. The knockout of Abl diminished the tyrosine phosphorylation of p130 Crk-associated substrate (CAS, an adapter protein associated with smooth muscle contraction) in resistance arteries upon stimulation with phenylephrine or angiotensin II. The agonist-elicited enhancement of F-actin-to-G-actin ratios in arteries assessed by fluorescent microscopy was also reduced in Abl(-/-) mice. It has been known that vinculin is a structural protein that links actin filaments to extracellular matrix via transmembrane integrins, whereas paxillin is a signaling protein associated with focal contacts mediating actin cytoskeleton remodeling. The expression of vinculin and paxillin at protein and messenger levels was lower in arterial vessels from Abl knockout mice. However, the agonist-induced increase in myosin phosphorylation was not attenuated in arteries from Abl knockout mice. These results indicate that Abl differentially regulates Crk-associated substrate, vinculin, and paxillin in arterial vessels. The Abl-regulated cellular process and blood pressure are independent of myosin activation in vascular smooth muscle.
Collapse
Affiliation(s)
- Shu Chen
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
4
|
Abstract
Vascular smooth muscle is a key effector in the wall of blood vessels during the pathogenesis of hypertension. Various factors directly elicit smooth muscle cell contraction, migration, growth, and hypertrophy, which lead to the progression of hypertension. Crk-associated substrate (CAS), the first discovered member of the adapter protein CAS family, has recently emerged as a critical cellular component that regulates smooth muscle functions. In this review, the molecular structure and protein interactions of the CAS family members are summarized. Evidence for the role of CAS in the regulation of vascular smooth muscle contractility, cell migration, hypertrophy, and growth is presented. Regulation of CAS by novel tyrosine kinases/phosphatases and unique downstream signaling partners of CAS are also discussed. These new findings establish the important role for CAS in regulating vascular smooth muscle functions. The CAS-associated processes may be new biological targets for the development of new treatment of cardiovascular diseases such as hypertension.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| |
Collapse
|
5
|
Santen RJ, Song RX, Masamura S, Yue W, Fan P, Sogon T, Hayashi SI, Nakachi K, Eguchi H. Adaptation to Estradiol Deprivation Causes Up-Regulation of Growth Factor Pathways and Hypersensitivity to Estradiol in Breast Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 630:19-34. [DOI: 10.1007/978-0-387-78818-0_2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Agredano-Moreno LT, Reyes de la Cruz H, Martínez-Castilla LP, Sánchez de Jiménez E. Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. MOLECULAR BIOSYSTEMS 2007; 3:794-802. [DOI: 10.1039/b705803a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 2006; 12:112-24. [PMID: 17275731 DOI: 10.1016/j.drudis.2006.12.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/16/2006] [Accepted: 12/07/2006] [Indexed: 12/17/2022]
Abstract
The macrolide rapamycin is used clinically to treat graft rejection and restenosis. Mammalian target of rapamycin (mTOR) is a central controller of cellular and organism growth that integrates nutrient and hormonal signals, and regulates diverse cellular processes. New studies have linked mTOR to several human diseases including cancer, diabetes, obesity, cardiovascular diseases and neurological disorders. Recent data have also revealed that mTOR is involved in the regulation of lifespan and in age-related diseases. These findings demonstrate the importance of growth control in the pathology of major diseases and overall human health, and underscore the therapeutic potential of the mTOR pathway.
Collapse
Affiliation(s)
- Chi Kwan Tsang
- Department of Pharmacology and Cancer Institute of New Jersey (CINJ) Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854 USA
| | | | | | | |
Collapse
|
8
|
Yue W, Wang J, Li Y, Fan P, Santen RJ. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. Int J Cancer 2006; 117:746-54. [PMID: 15957161 DOI: 10.1002/ijc.21222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estradiol (E2) stimulates proliferation of hormone-dependent breast cancer and exerts downstream effects on growth factors and their receptors. Key among the pathways' mediating growth factor action is the MAP kinase signaling cascade and the PI-3 kinase pathway with its downstream effector mTOR. We postulated that farnesylthiosalicylic acid (FTS), a novel anti-Ras drug, could effectively inhibit hormone-dependent breast cancer because Ras activates both the MAP kinase and the PI3 kinase pathways. Wild-type MCF-7 cells and a long-term estrogen-deprived subline (LTED) were used to examine the effect of FTS on cell growth and on several biochemical parameters. FTS inhibited growth of both cell lines by reducing proliferation and inducing apoptosis. These effects correlated best with blockade of phosphorylation of PHAS-I and p70 S6 kinase, 2 downstream effectors of mTOR. We observed only minimal inhibition of Akt, an effector upstream of mTOR. Taken together, these findings demonstrate a novel effect of FTS to inhibit mTOR signaling and also suggest that mTOR has a key role in breast cancer cell proliferation. Unexpectedly, only minimal inhibition of MAP kinase occurred in response to FTS at concentrations that markedly reduced cell growth. These later data provide support for the concept that FTS exerts its effects predominantly by blocking mTOR and to a lesser effect by inhibition of MAP kinase in breast cancer cells.
Collapse
Affiliation(s)
- Wei Yue
- Department of Internal Medicine, University of Virginia Health System, Charlovttesville, VA 22903, USA.
| | | | | | | | | |
Collapse
|
9
|
Holz MK, Blenis J. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem 2005; 280:26089-93. [PMID: 15905173 DOI: 10.1074/jbc.m504045200] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we demonstrate that mammalian target of rapamycin (mTOR) is phosphorylated in a rapamycin-sensitive manner. We show that S6 kinase 1 (S6K1), but not Akt, directly phosphorylates mTOR in cell-free in vitro system and in cells. Expression of a constitutively active, rapamycin- and wortmannin-resistant S6K1 leads to constitutive phosphorylation of mTOR, whereas knock-down of S6K1 using small inhibitory RNA greatly reduces mTOR phosphorylation despite elevated Akt activity. Importantly, phosphorylation of mTOR by S6K1 occurs at threonine 2446/serine 2448. This region has been shown previously to be part of a regulatory repressor domain. These sites are also constitutively phosphorylated in the breast cancer cell line MCF7 carrying an amplification of the S6K1 gene, but not in a less tumorigenic cell line, MCF10a. Many models for Akt signaling to mTOR have been presented, suggesting direct phosphorylation by Akt. These models must be reconsidered in light of the present findings.
Collapse
Affiliation(s)
- Marina K Holz
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
10
|
Santen RJ, Song RX, Zhang Z, Kumar R, Jeng MH, Masamura S, Lawrence J, MacMahon LP, Yue W, Berstein L. Adaptive hypersensitivity to estrogen: mechanisms and clinical relevance to aromatase inhibitor therapy in breast cancer treatment. J Steroid Biochem Mol Biol 2005; 95:155-65. [PMID: 16024245 DOI: 10.1016/j.jsbmb.2005.04.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Breast tumors in women can adapt to endocrine deprivation therapy by developing hypersensitivity to estradiol. For this reason, aromatase inhibitors can be effective in women relapsing after treatment with tamoxifen or following oophorectomy. To understand the mechanisms responsible, we examined estrogenic stimulation of cell proliferation in a model system and provided in vitro and in vivo evidence that long-term estradiol deprivation (LTED) causes "adaptive hypersensitivity". The primary mechanisms responsible involve up-regulation of ER alpha as well as the MAP kinase, PI-3 kinase, and mTOR growth factor pathways. ER alpha is 4-10-fold up-regulated and co-opts a classical growth factor pathway using Shc, Grb2, and Sos. This induces rapid non-genomic effects which are enhanced in LTED cells. Estradiol binds to cell membrane associated ER alpha, physically associates with the adaptor protein Shc, and induces its phosphorylation. In turn, Shc binds Grb2 and Sos which result in the rapid activation of MAP kinase. These non-genomic effects of estradiol produce biologic effects as evidenced by Elk activation and by morphologic changes in cell membranes. Additional effects include activation of PI-3 kinase and mTOR pathways through estradiol induced binding of ER alpha to the IGF-1 and EGF receptors. Further proof of the non-genomic effects of estradiol involved use of "designer" cells which selectively express ER alpha in nucleus, cytosol, and cell membrane. We have used a new downstream inhibitor of these pathways, farnesyl-thio-salicylic acid (FTS), to block proliferation in hypersensitive cells as a model for a potentially effective strategy for treatment of patients.
Collapse
Affiliation(s)
- R J Santen
- Department of Medicine, University of Virginia Health System, P.O. Box 801416, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vary T, Lynch C. Nutrient Signaling to Muscle and Adipose Tissue by Leucine. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028362.pt2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Abstract
mTOR/RAFT1/FRAP is the target of the FKBP12-rapamycin complex as well as a central component of a nutrient- and hormone-sensitive pathway that controls cellular growth. Recent work reveals that mTOR interacts with a novel evolutionarily conserved protein that we named raptor, for "regulatory associated protein of mTOR." Raptor has several roles in the mTOR pathway. It is necessary for nutrient-mediated activation of the downstream effector S6K1 and increases in cell size. In addition, under conditions that repress the mTOR pathway, the association of raptor with mTOR is strengthened, leading to a decrease in mTOR kinase activity. Raptor is a critical component of the mTOR pathway that regulates cell growth in response to nutrient levels by associating with mTOR.
Collapse
Affiliation(s)
- D H Kim
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
13
|
Abstract
The mammalian target of rapamycin, mTOR, is a protein Ser-Thr kinase that functions as a central element in a signaling pathway involved in the control of cell growth and proliferation. The activity of mTOR is controlled not only by amino acids, but also by hormones and growth factors that activate the protein kinase Akt. The signaling pathway downstream of Akt leading to mTOR involves the protein products of the genes mutated in tuberous sclerosis, TSC1 and TSC2, and the small guanosine triphosphatase, Rheb. In cells, mTOR is found in a complex with two other proteins, raptor and mLST8. In this review, we describe recent progress in understanding the control of the mTOR signaling pathway and the role of mTOR-interacting proteins.
Collapse
Affiliation(s)
- Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
14
|
Lynch CJ, Halle B, Fujii H, Vary TC, Wallin R, Damuni Z, Hutson SM. Potential role of leucine metabolism in the leucine-signaling pathway involving mTOR. Am J Physiol Endocrinol Metab 2003; 285:E854-63. [PMID: 12812918 DOI: 10.1152/ajpendo.00153.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Leucine has been shown to stimulate adipose tissue protein synthesis in vivo as well as leptin secretion, protein synthesis, hyper-plastic growth, and tissue morphogenesis in in vitro experiments using freshly isolated adipocytes. Recently, others have proposed that leucine oxidation in the mitochondria may be required to activate the mammalian target of rapamycin (mTOR), the cytosolic Ser/Thr protein kinase that appears to mediate some of these effects. The first irreversible and rate-limiting step in leucine oxidation is catalyzed by the branched-chain alpha-keto acid dehydrogenase (BCKD) complex. The activity of this complex is regulated acutely by phosphorylation of the E1alpha-subunit at Ser293 (S293), which inactivates the complex. Because the alpha-keto acid of leucine regulates the activity of BCKD kinase, it has been suggested as a potential target for leucine regulation of mTOR. To study the regulation of BCKD phosphorylation and its potential link to mTOR activation, a phosphopeptide-specific antibody recognizing this site was developed and characterized. Phospho-S293 (pS293) immunoreactivity in liver corresponded closely to diet-induced changes in BCKD activity state. Immunoreactivity was also increased in TREMK-4 cells after the induction of BCKD kinase by a drug-inducible promoter. BCKD S293 phosphorylations in adipose tissue and gastrocnemius (which is mostly inactive in vivo) were similar. This suggests that BCKD complex in epididymal adipose tissue from food-deprived rats is mostly inactive (unable to oxidize leucine), as is the case in muscle. To begin to test the leucine oxidation hypothesis of mTOR activation, the dose-dependent effects of orally administered leucine on acute activation of S6K1 (an mTOR substrate) and BCKD were compared using the pS293 antibodies. Increasing doses of leucine directly correlated with increases in plasma leucine concentration. Phosphorylation of S6K1 (Thr389, the phosphorylation site leading to activation) in adipose tissue was maximal at a dose of leucine that increased plasma leucine approximately threefold. Changes in BCKD phosphorylation state required higher plasma leucine concentrations. The results seem more consistent with a role for BCKD and BCKD kinase in the activation of leucine metabolism/oxidation than in the activation of the leucine signal to mTOR.
Collapse
Affiliation(s)
- Christopher J Lynch
- Department of Cellular & Molecular Physiology (MC H166, Rm C4757), Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ferguson G, Mothe-Satney I, Lawrence JC. Ser-64 and Ser-111 in PHAS-I are dispensable for insulin-stimulated dissociation from eIF4E. J Biol Chem 2003; 278:47459-65. [PMID: 14507920 DOI: 10.1074/jbc.m307949200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates phosphorylation of multiple sites in the eIF4E-binding protein, PHAS-I, leading to dissociation of the PHAS-I.eIF4E complex and to an increase in cap-dependent translation. The Ser-64 and Ser-111 sites have been proposed to have key roles in controlling the association of PHAS-I and eIF4E. To determine whether the effects of insulin require these sites, we assessed the control of PHAS-I proteins having Ala-64 or Ala-111 mutations. The results indicate that phosphorylation of neither site is required for insulin to promote release of PHAS-I from eIF4E. Also, the mutation of Ser-111, which has been proposed to serve as a necessary priming site for the phosphorylation of other sites in PHAS-I, did not affect the phosphorylation of Thr-36/45, Ser-64, or Thr-69. Insulin promoted the release of eIF4E from PHAS-II, a PHAS isoform that lacks the Ser-111 site, but it was without effect on the amount of eIF4E bound to the third isoform, PHAS-III. The results demonstrate that contrary to widely accepted models, Ser-64 and Ser-111 are not required for the control of PHAS-I binding to eIF4E in cells, implicating phosphorylation of the Thr sites in dissociation of the PHAS-I.eIF4E complex. The findings also indicate that PHAS-II, but not PHAS-III, contributes to the control of protein synthesis by insulin.
Collapse
Affiliation(s)
- Gail Ferguson
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
16
|
Choi KM, McMahon LP, Lawrence JC. Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J Biol Chem 2003; 278:19667-73. [PMID: 12665511 DOI: 10.1074/jbc.m301142200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is the central element of a signaling pathway involved in the control of mRNA translation and cell growth. The actions of mTOR are mediated in part through the phosphorylation of the eukaryotic initiation factor 4E-binding protein, PHAS-I. In vitro mTOR phosphorylates PHAS-I in sites that control PHAS-I binding to eukaryotic initiation factor 4E; however, whether mTOR directly phosphorylates PHAS-I in cells has been a point of debate. The Arg-Ala-Ile-Pro (RAIP motif) and Phe-Glu-Met-Asp-Ile (tor signaling motif) sequences found in the NH2- and COOH-terminal regions of PHAS-I, respectively, are required for the efficient phosphorylation of PHAS-I in cells. Here we show that mutations in either motif markedly decreased the phosphorylation of recombinant PHAS-I by mTOR in vitro. Wild-type PHAS-I, but none of the mutant proteins, was coimmunoprecipitated with hemagglutinin-tagged raptor, an mTOR-associated protein, after extracts of cells overexpressing raptor had been supplemented with recombinant PHAS-I proteins. Moreover, raptor overexpression enhanced the phosphorylation of wild-type PHAS-I by mTOR but not the phosphorylation of the mutant proteins. The results not only provide direct evidence that both the RAIP and tor signaling motifs are important for the phosphorylation by mTOR, possibly by allowing PHAS-I binding to raptor, but also support the view that mTOR phosphorylates PHAS-I in cells.
Collapse
Affiliation(s)
- Kin Man Choi
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | |
Collapse
|
17
|
Abstract
Stress granules (SGs) are phase-dense particles that appear in the cytoplasm of eukaryotic cells that have been exposed to environmental stress(e.g. heat, oxidative conditions, hyperosmolarity and UV irradiation). SG assembly is a consequence of abortive translational initiation: SGs appear when translation is initiated in the absence of eIF2-GTP-tRNAiMet, the ternary complex that normally loads tRNAiMet onto the small ribosomal subunit. Stress-induced depletion of eIF2-GTP-tRNAiMet allows the related RNA-binding proteins TIA-1 and TIAR to promote the assembly of eIF2-eIF5-deficient preinitiation complexes, the core constituents of SGs. The mRNP components that make up the SG are in a dynamic equilibrium with polysomes. As such, the SG appears to constitute a metabolic domain through which mRNPs are continually routed and subjected to triage — they are first monitored for integrity and composition, and then sorted for productive translational initiation or targeted degradation.
Collapse
Affiliation(s)
- Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA.
| | | |
Collapse
|
18
|
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-75. [PMID: 12150925 DOI: 10.1016/s0092-8674(02)00808-5] [Citation(s) in RCA: 2305] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
mTOR/RAFT1/FRAP is the target of the immunosuppressive drug rapamycin and the central component of a nutrient- and hormone-sensitive signaling pathway that regulates cell growth. We report that mTOR forms a stoichiometric complex with raptor, an evolutionarily conserved protein with at least two roles in the mTOR pathway. Raptor has a positive role in nutrient-stimulated signaling to the downstream effector S6K1, maintenance of cell size, and mTOR protein expression. The association of raptor with mTOR also negatively regulates the mTOR kinase activity. Conditions that repress the pathway, such as nutrient deprivation and mitochondrial uncoupling, stabilize the mTOR-raptor association and inhibit mTOR kinase activity. We propose that raptor is a missing component of the mTOR pathway that through its association with mTOR regulates cell size in response to nutrient levels.
Collapse
Affiliation(s)
- Do-Hyung Kim
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|