1
|
Furnon W, Fender P, Confort MP, Desloire S, Nangola S, Kitidee K, Leroux C, Ratinier M, Arnaud F, Lecollinet S, Boulanger P, Hong SS. Remodeling of the Actin Network Associated with the Non-Structural Protein 1 (NS1) of West Nile Virus and Formation of NS1-Containing Tunneling Nanotubes. Viruses 2019; 11:v11100901. [PMID: 31569658 PMCID: PMC6832617 DOI: 10.3390/v11100901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells.
Collapse
Affiliation(s)
- Wilhelm Furnon
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Pascal Fender
- Institut de Biologie Structurale, CNRS UMR 5075, 38042 Grenoble, France.
| | - Marie-Pierre Confort
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sophie Desloire
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Sawitree Nangola
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Kuntida Kitidee
- Center for Research & Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Caroline Leroux
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Maxime Ratinier
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Frédérick Arnaud
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- EPHE, PSL Research University, INRA, Université de Lyon, University Claude Bernard Lyon 1, UMR754, IVPC, Cedex 07, 69366 Lyon, France.
| | - Sylvie Lecollinet
- UMR-1161 Virology, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES Animal Health Laboratory, EURL on Equine Diseases, 94704 Maisons-Alfort, France.
| | - Pierre Boulanger
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
| | - Saw-See Hong
- Université de Lyon, University Claude Bernard Lyon 1, INRA, EPHE, IVPC, UMR754, Viral Infections & Comparative Pathology, Cedex 07, 69366 Lyon, France.
- Institut National de la Santé et de la Recherche Médicale, 101, rue de Tolbiac, Cedex 13, 75654 Paris, France.
| |
Collapse
|
2
|
Chu JJH, Ng ML. Viral and cellular determinants of West Nile virus entry and morphogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The re-emergence of the Old World flavivirus – West Nile in the Western hemisphere – has spurred intense research to decipher the host-cellular and viral determinants in contributing to West Nile virus pathogenesis. The increasing understanding of the complex interactions between West Nile virus and host cells will definitely help to accelerate the development of clinically effective antiviral therapies and a vaccine. In this review article, we present a perspective on the recent advances in revealing how the host-cellular factors are engaged during the entry, morphogenesis and assembly of West Nile virus.
Collapse
Affiliation(s)
- Justin Jang-Hann Chu
- National University of Singapore, Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, 5 Science Drive 2, 117597 Singapore
| | - Mah-Lee Ng
- National University of Singapore, Flavivirology Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, 5 Science Drive 2, 117597 Singapore
| |
Collapse
|
3
|
Hirsch AJ, Medigeshi GR, Meyers HL, DeFilippis V, Früh K, Briese T, Lipkin WI, Nelson JA. The Src family kinase c-Yes is required for maturation of West Nile virus particles. J Virol 2005; 79:11943-51. [PMID: 16140770 PMCID: PMC1212629 DOI: 10.1128/jvi.79.18.11943-11951.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 06/17/2005] [Indexed: 11/20/2022] Open
Abstract
The role of cellular genes in West Nile virus (WNV) replication is not well understood. Examination of cellular transcripts upregulated during WNV infection revealed an increase in the expression of the src family kinase (SFK) c-Yes. WNV-infected cell lines treated with the SFK inhibitor PP2 demonstrated a 2- to 4-log decrease in viral titers, suggesting that SFK activity is required for completion of the viral replication cycle. RNA interference mediated knock-down of c-Yes, but not c-Src, and similarly reduced virus yield, specifically implicating c-Yes in WNV production. Interestingly, PP2 treatment did not reduce intracellular levels of either viral RNA or protein, suggesting that the drug does not act on the early stages of replication. However, endoglycosidase H (endoH) digestion of the viral envelope (E) glycoprotein revealed that the acquisition of endoH-resistant glycans by E, but not endogenous major histocompatibility complex class I, was reduced in PP2-treated cells, demonstrating that E specifically does not traffic beyond the endoplasmic reticulum in the absence of SFK activity. Electron microscopy further revealed that PP2-treated WNV-infected cells accumulated an increased number of virions in the ER compared to untreated cells. Therefore, we conclude that inhibition of SFK activity did not interfere with virus assembly but prevented transit of virions through the secretory pathway. These results identify c-Yes as a cellular protein that is involved in WNV assembly and egress.
Collapse
Affiliation(s)
- Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Chu JJH, Ng ML. Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 2004; 78:10543-55. [PMID: 15367621 PMCID: PMC516396 DOI: 10.1128/jvi.78.19.10543-10555.2004] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 04/18/2004] [Indexed: 02/08/2023] Open
Abstract
The pathway of West Nile flavivirus early internalization events was mapped in detail in this study. Overexpression of dominant-negative mutants of Eps15 strongly inhibits West Nile virus (WNV) internalization, and pharmacological drugs that blocks clathrin also caused a marked reduction in virus entry but not caveola-dependent endocytosis inhibitory agent, filipin. Using immunocryoelectron microscopy, WNV particles were seen within clathrin-coated pits after 2 min postinfection. Double-labeling immunofluorescence assays and immunoelectron microscopy performed with anti-WNV envelope or capsid proteins and cellular markers (EEA1 and LAMP1) revealed the trafficking pathway of internalized virus particles from early endosomes to lysosomes and finally the uncoating of the virus particles. Disruption of host cell cytoskeleton (actin filaments and microtubules) with cytochalasin D and nocodazole showed significant reduction in virus infectivity. Actin filaments are shown to be essential during the initial penetration of the virus across the plasma membrane, whereas microtubules are involved in the trafficking of internalized virus from early endosomes to lysosomes for uncoating. Cells treated with lysosomotropic agents were largely resistant to infection, indicating that a low-pH-dependent step is required for WNV infection. In situ hybridization of DNA probes specific for viral RNA demonstrated the trafficking of uncoated viral RNA genomes to the endoplasmic reticulum.
Collapse
Affiliation(s)
- J J H Chu
- Flavivirology Laboratory, Department of Microbiology, 5 Science Dr. 2, National University of Singapore, Singapore 117597, Singapore
| | | |
Collapse
|