1
|
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel) 2020; 12:E3220. [PMID: 33142861 PMCID: PMC7692075 DOI: 10.3390/cancers12113220] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing-based transcriptomics has significantly redefined the concept of genome complexity, leading to the identification of thousands of lncRNA genes identification of thousands of lncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions that help to shape cell functionality and fate. Indeed, it is well-established now that lncRNAs play a key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims. The rapid increase of studies reporting lncRNAs alteration in cancers has also highlighted their relevance for tumorigenesis. Herein we describe the most prominent examples of well-established lncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances have provided new therapeutic strategies based on their targeting, and also report the challenges towards their use in the clinical settings.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| |
Collapse
|
2
|
Morales-Martinez M, Valencia-Hipolito A, Vega GG, Neri N, Nambo MJ, Alvarado I, Cuadra I, Duran-Padilla MA, Martinez-Maza O, Huerta-Yepez S, Vega MI. Regulation of Krüppel-Like Factor 4 (KLF4) expression through the transcription factor Yin-Yang 1 (YY1) in non-Hodgkin B-cell lymphoma. Oncotarget 2019; 10:2173-2188. [PMID: 31040909 PMCID: PMC6481341 DOI: 10.18632/oncotarget.26745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Krüppel-Like Factor 4 (KLF4) is a member of the KLF transcription factor family, and evidence suggests that KLF4 is either an oncogene or a tumor suppressor. The regulatory mechanism underlying KLF4 expression in cancer, and specifically in lymphoma, is still not understood. Bioinformatics analysis revealed two YY1 putative binding sites in the KLF4 promoter region (-950 bp and -105 bp). Here, the potential regulation of KLF4 by YY1 in NHL was analyzed. Mutation of the putative YY1 binding sites in a previously reported system containing the KLF4 promoter region and CHIP analysis confirmed that these binding sites are important for KLF4 regulation. B-NHL cell lines showed that both KLF4 and YY1 are co-expressed, and transfection with siRNA-YY1 resulted in significant inhibition of KLF4. The clinical implications of YY1 in the transcriptional regulation of KLF4 were investigated by IHC in a TMA with 43 samples of subtypes DLBCL and FL, and all tumor tissues expressing YY1 demonstrated a correlation with KLF4 expression, which was consistent with bioinformatics analyses in several databases. Our findings demonstrated that KLF4 can be transcriptionally regulated by YY1 in B-NHL, and a correlation between YY1 expression and KLF4 was found in clinical samples. Hence, both YY1 and KLF4 may be possible therapeutic biomarkers of NHL.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Unidad de Posgrado, Facultad de Medicina Universidad Nacional Autónoma de México, México City, México
| | - Alberto Valencia-Hipolito
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Gabriel G Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Unidad de Posgrado, Facultad de Medicina Universidad Nacional Autónoma de México, México City, México
| | - Natividad Neri
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, México City, México
| | - Maria J Nambo
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, México City, México
| | - Isabel Alvarado
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, México City, México
| | - Ivonne Cuadra
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, México City, México
| | - Marco A Duran-Padilla
- Servicio de Patología, Hospital General de México "Eduardo Liceaga", Facultad de Medicina de la UNAM, México City, México
| | - Otoniel Martinez-Maza
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México "Federico Gómez" S.S.A, México City, México
| | - Mario I Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Chen X, Yang Y, Cao Y, Wu C, Wu S, Su Z, Jin H, Wang D, Zhang G, Fan W, Lin J, Zeng Y, Hu D. lncRNA PVT1 identified as an independent biomarker for prognosis surveillance of solid tumors based on transcriptome data and meta-analysis. Cancer Manag Res 2018; 10:2711-2727. [PMID: 30147369 PMCID: PMC6101015 DOI: 10.2147/cmar.s166260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose Long noncoding RNA PVT1 is dysregulated in some human tumors and has been found to increase the risk of tumor progression and poor prognosis. This study aimed to reanalyze the effect of PVT1 on tumorous prognosis. Materials and methods The effect of PVT1 on metastasis and survival were analyzed by univariate logistic regression and Cox proportional hazards model for 32 types of cancer in the Cancer Genome Atlas database (TCGA), and the relationship between PVT1 level and expression of relative genes was assessed by Pearson correlation analysis. RevMan5.3 and STATA14.0 were used to estimate pooled effects of PVT1 on cancer prognosis with data from TCGA and published studies. Results In TCGA data, high PVT1 expression tended to increase the risk of TNM progression and decreased the overall survival (OS) time in most of cancers. The pooled effect of PVT1 on TNM (pooled-OR=1.46, 95% CI: 1.29-1.65) and OS (pooled HR=1.32, 95% CI: 1.22-1.43), calculated from 37 and 48 cohorts, identified that high PVT1 expression promoted the metastasis and poor prognosis of cancer. Furthermore, the pooled ORs of 2.77 (95% CI: 1.65-4.66), 4.32 (95% CI: 1.99-9.36), 1.35 (95% CI: 1.01-1.80), 1.62 (95% CI: 1.21-2.18) and 1.48 (95% CI: 1.02-2.15) provided evidence that PVT1 played a role in lymph node metastasis, depth of invasion, distant metastasis, differentiation and lymphatic invasion; while the expression of 24 identified target genes was significantly associated with PVT1 level, and high PVT1 expression dependently decreased the OS time under the influence of co-expression genes (OR=1.29, 95% CI: 1.25-1.32) in high-throughput RNA sequencing merging data. In addition, the expression of PVT1 could be upregulated by smoking, with the pooled OR being 1.09 (95% CI 1.01-1.16). Conclusion PVT1 is a dependent biomarker for tumorous prognosis surveillance. However, the reference value of PVT1 needs further study.
Collapse
Affiliation(s)
- Xiaoliang Chen
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Yueying Yang
- Science and Education Department, Shenzhen School of the Affiliated High School of Renmin University of China, Shenzhen, China
| | - Yong Cao
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Changjun Wu
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Shuxian Wu
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Zhan Su
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Hongwei Jin
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Dongli Wang
- The Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Gengxin Zhang
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Wei Fan
- Division of Digestive and Liver Disease, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jinbo Lin
- Department of Oncology, Longgang Central Hospital of Shenzhen Affiliated to Zunyi Medical College, Shenzhen, China,
| | - Yunhong Zeng
- Department of Oncology, Guangming District People's Hospital of Shenzhen, Shenzhen, China,
| | - Dongsheng Hu
- School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis. Int J Hematol 2012; 96:492-500. [PMID: 22972171 DOI: 10.1007/s12185-012-1171-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Single-nucleotide polymorphism genotyping microarray (SNP array) analysis provides detailed information on chromosomal copy number aberrations. To obtain detailed information on genomic abnormalities related to pathogenesis or prognosis of multiple myeloma (MM), we performed 250K SNP array analysis in 39 MM patients and 11 cell lines. We identified an accumulation of deletions and uniparental disomies at 22q12.1. Among the hyperdiploid MM cases, chromosomal imbalance at this locus was associated with poor prognosis. On sequencing, we also found a mutation in the seizure-related 6 homolog (mouse)-like (SEZ6L) gene located at ch.22q12.1 in an MM cell line, NOP1. We further found isolated deletions in 17 genes, five of which are known tumor suppressor genes. Of these, deletion of protein tyrosine phosphatase, receptor type D (PTPRD) was found in three samples, including two patients. Consistent with previous reports, non-hyperdiploid MM, deletion of 13q (del13q) and gain of 1q in non-hyperdiploid MMs were predictive of poor prognosis (p = 0.039, p = 0.049, and p = 0.013, respectively). However, our analysis revealed that unless accompanied by gain of 1q, the prognosis of non-hyperdiploid MM was as good as that of hyperdiploid MM. Thus, SNP array analysis provides significant information useful to understanding the pathogenesis and prognosis of MM.
Collapse
|
5
|
Oncogenic Myc translocations are independent of chromosomal location and orientation of the immunoglobulin heavy chain locus. Proc Natl Acad Sci U S A 2012; 109:13728-32. [PMID: 22869734 DOI: 10.1073/pnas.1202882109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many tumors are characterized by recurrent translocations between a tissue-specific gene and a proto-oncogene. The juxtaposition of the Ig heavy chain gene and Myc in Burkitt's lymphoma and in murine plasmacytoma is a classic example. Regulatory elements within the heavy chain constant region locus are required for Myc translocation and/or deregulation. However, many genes are regulated by cis-acting elements at distances up to 1,000 kb outside the locus. Such putative distal elements have not been examined for the heavy chain locus, particularly in the context of Myc translocations. We demonstrate that a transgene containing the Ig heavy chain constant region locus, inserted into five different chromosomal locations, can undergo translocations involving Myc. Furthermore, these translocations are able to generate plasmacytomas in each transgenic line. We conclude that the heavy chain constant region locus itself includes all of the elements necessary for both the translocation and the deregulation of the proto-oncogene.
Collapse
|
6
|
Casellas R, Yamane A, Kovalchuk AL, Potter M. Restricting activation-induced cytidine deaminase tumorigenic activity in B lymphocytes. Immunology 2009; 126:316-28. [PMID: 19302140 DOI: 10.1111/j.1365-2567.2008.03050.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA breaks play an essential role in germinal centre B cells as intermediates to immunoglobulin class switching, a recombination process initiated by activation-induced cytidine deaminase (AID). Immunoglobulin gene hypermutation is likewise catalysed by AID but is believed to occur via single-strand DNA breaks. When improperly repaired, AID-mediated lesions can promote chromosomal translocations (CTs) that juxtapose the immunoglobulin loci to heterologous genomic sites, including oncogenes. Two of the most studied translocations are the t(8;14) and T(12;15), which deregulate cMyc in human Burkitt's lymphomas and mouse plasmacytomas, respectively. While a complete understanding of the aetiology of such translocations is lacking, recent studies using diverse mouse models have shed light on two important issues: (1) the extent to which non-specific or AID-mediated DNA lesions promote CTs, and (2) the safeguard mechanisms that B cells employ to prevent AID tumorigenic activity. Here we review these advances and discuss the usage of pristane-induced mouse plasmacytomas as a tool to investigate the origin of Igh-cMyc translocations and B-cell tumorigenesis.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomics and Immunity, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
7
|
Carramusa L, Contino F, Ferro A, Minafra L, Perconti G, Giallongo A, Feo S. The PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. J Cell Physiol 2007; 213:511-8. [PMID: 17503467 DOI: 10.1002/jcp.21133] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human PVT-1 gene is located on chromosome 8 telomeric to the c-Myc gene and it is frequently involved in the translocations occurring in variant Burkitt's lymphomas and murine plasmacytomas. It has been proposed that PVT-1 regulates c-Myc gene transcription over a long distance. To get new insights into the functional relationships between the two genes, we have investigated PVT-1 and c-Myc expression in normal human tissues and in transformed cells. Our findings indicate that PVT-1 expression is restricted to a relative low number of normal tissues compared to the wide distribution of c-Myc mRNA, whereas the gene is highly expressed in many transformed cell types including neuroblastoma cells that do not express c-Myc. Reporter gene assays were used to dissect the PVT-1 promoter and to identify the region responsible for the elevated expression observed in transformed cells. This region contains two putative binding sites for Myc proteins. The results of transfection experiments in RAT1-MycER cells and chromatin immunoprecipitation (ChIP) assays in proliferating and differentiated neuroblastoma cells indicate that PVT-1 is a downstream target of Myc proteins.
Collapse
Affiliation(s)
- Letizia Carramusa
- Dipartimento di Oncologia Sperimentale e Applicazioni Cliniche, Università di Palermo, Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Thomas JW, Kendall PL, Mitchell HG. The natural autoantibody repertoire of nonobese diabetic mice is highly active. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6617-24. [PMID: 12444175 DOI: 10.4049/jimmunol.169.11.6617] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Analysis of spontaneous hybridomas generated from nonobese diabetic (NOD) mice indicates that the natural autoantibody repertoire of NOD mice is highly active compared with C57BL/6 and BALB/c mice. This property of increased B cell activity is present early in life (4 wk) and persists in older mice of both sexes. Even when selected for binding to a prototypic beta cell Ag, such as insulin, NOD mAb have characteristics of natural autoantibodies that include low avidity and broad specificity for multiple Ags. Analyses of the variable region of Ig H chain (V(H)) and variable region kappa L chain genes expressed by six insulin binding mAb show that V gene segments are often germline encoded and are identical with those used by autoantibodies, especially anti-dsDNA, from systemic autoimmune disease in MRL, NZB/W, and motheaten mice. V(H) genes used by four mAb are derived from the large J558 family and two mAb use V(H)7183 and V(H)Q52 genes. The third complementarity-determining region of Ig H chain of these mAb have limited N segment diversity, and some mAb contain DNA segments indicative of gene replacement. Genetic abnormalities in the regulation of self-reactive B cells may be a feature that is shared between NOD and conventional systemic autoimmune disorders. In NOD, the large pool of self-reactive B cells may fuel autoimmune beta cell destruction by facilitating T-B cell interactions, as evidenced by the identification of one mAb that has undergone Ag-driven somatic hypermutation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Antinuclear/genetics
- Antibodies, Monoclonal/genetics
- Antibody Diversity
- Autoantibodies/genetics
- Autoimmunity/genetics
- B-Lymphocytes/immunology
- Base Sequence
- DNA/genetics
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Female
- Genes, Immunoglobulin
- Hybridomas/immunology
- Immunity, Innate/genetics
- Insulin Antibodies/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD/genetics
- Mice, Inbred NOD/immunology
- Molecular Sequence Data
- Recombination, Genetic
- Somatic Hypermutation, Immunoglobulin
- Species Specificity
Collapse
Affiliation(s)
- James W Thomas
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | |
Collapse
|