1
|
Hua T, Zeng Z, Chen J, Xue Y, Li Y, Sang Q. Human Malignant Rhabdoid Tumor Antigens as Biomarkers and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:3685. [PMID: 35954348 PMCID: PMC9367328 DOI: 10.3390/cancers14153685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Atypical teratoid rhabdoid tumor (ATRT) is a lethal type of malignant rhabdoid tumor in the brain, seen mostly in children under two years old. ATRT is mainly linked to the biallelic inactivation of the SMARCB1 gene. To understand the deadly characteristics of ATRT and develop novel diagnostic and immunotherapy strategies for the treatment of ATRT, this study investigated tumor antigens, such as alpha-fetoprotein (AFP), mucin-16 (MUC16/CA125), and osteopontin (OPN), and extracellular matrix modulators, such as matrix metalloproteinases (MMPs), in different human malignant rhabdoid tumor cell lines. In addition, the roles of MMPs were also examined. MATERIALS AND METHODS Five human cell lines were chosen for this study, including two ATRT cell lines, CHLA-02-ATRT and CHLA-05-ATRT; a kidney malignant rhabdoid tumor cell line, G401; and two control cell lines, human embryonic kidney HEK293 and HEK293T. Both ATRT cell lines were treated with a broad-spectrum MMP inhibitor, GM6001, to investigate the effect of MMPs on cell proliferation, viability, and expression of tumor antigens and biomarkers. Gene expression was examined using a reverse transcription polymerase chain reaction (RT-PCR), and protein expression was characterized by immunocytochemistry and flow cytometry. RESULTS All the rhabdoid tumor cell lines tested had high gene expression levels of MUC16, OPN, AFP, and MSLN. Low expression levels of neuron-specific enolase (ENO2) by the two ATRT cell lines demonstrated their lack of neuronal genotype. Membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14) and tissue inhibitor of metalloproteinases-2 (TIMP-2) were highly expressed in these malignant rhabdoid tumor cells, indicating their invasive phenotypes. GM6001 significantly decreased ATRT cell proliferation and the gene expression of MSLN, OPN, and several mesenchymal markers, suggesting that inhibition of MMPs may reduce the aggressiveness of rhabdoid cancer cells. CONCLUSION The results obtained from this study may advance our knowledge of the molecular landscapes of human malignant rhabdoid tumors and their biomarkers for effective diagnosis and treatment. This work analyzed the expression of human malignant rhabdoid tumor antigens that may serve as biomarkers for the development of novel therapeutic strategies, such as cancer vaccines and targeted and immunotherapies targeting osteopontin and mesothelin, for the treatment of patients with ATRT and other malignant rhabdoid tumors.
Collapse
Affiliation(s)
- Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Ziwei Zeng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Junji Chen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310-6046, USA;
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| | - Qingxiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (T.H.); (Z.Z.); (J.C.); (Y.X.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
2
|
Mishra MN, Chandavarkar V, Sharma R, Bhargava D. Structure, function and role of CD44 in neoplasia. J Oral Maxillofac Pathol 2019; 23:267-272. [PMID: 31516234 PMCID: PMC6714250 DOI: 10.4103/jomfp.jomfp_246_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
CD44 is a group of protein molecules which perform a variety of functions. Their wide range of functions are mainly based on their multiple variations in their molecular structure. Furthermore, they are distributed in various tissues of the human body. They have a unique property of cell adhesion, which can lead to interaction between two different cells or a cell and its pericellular matrix. CD44 as a cell surface adhesive molecule helps in aggregation and migration of tumor cells. CD44 plays an important role in cancer of bladder, liver, lungs, pancreas, etc. Expression profile of CD44 has been seen in the epithelia of the lip, tongue, gingiva, hard palate, floor of the mouth, buccal mucosa and pharynx. The relationship between the expression of CD44 v6 and regional lymph node metastasis has been studied immunohistochemically. The expression of CD44 v6 was apparently downregulated in oral squamous cell carcinoma, but not in normal oral mucosa. Carcinomas expressing lower levels of CD44 v6 exhibited more frequent regional lymph node metastasis. No significant relation was found between the expression of CD44 v6 in primary and metastatic lesions. Still, the precise function of CD44 in the metastatic process and the degree of involvement in human malignancies is yet to be established.
Collapse
Affiliation(s)
- Mithilesh N Mishra
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vidyadevi Chandavarkar
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ritika Sharma
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Deepak Bhargava
- Department of Oral Pathology, School of Dental Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Tam KJ, Hui DHF, Lee WW, Dong M, Tombe T, Jiao IZF, Khosravi S, Takeuchi A, Peacock JW, Ivanova L, Moskalev I, Gleave ME, Buttyan R, Cox ME, Ong CJ. Semaphorin 3 C drives epithelial-to-mesenchymal transition, invasiveness, and stem-like characteristics in prostate cells. Sci Rep 2017; 7:11501. [PMID: 28904399 PMCID: PMC5597577 DOI: 10.1038/s41598-017-11914-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is among the most commonly-occurring cancers worldwide and a leader in cancer-related deaths. Local non-invasive PCa is highly treatable but limited treatment options exist for those with locally-advanced and metastatic forms of the disease underscoring the need to identify mechanisms mediating PCa progression. The semaphorins are a large grouping of membrane-associated or secreted signalling proteins whose normal roles reside in embryogenesis and neuronal development. In this context, semaphorins help establish chemotactic gradients and direct cell movement. Various semaphorin family members have been found to be up- and down-regulated in a number of cancers. One family member, Semaphorin 3 C (SEMA3C), has been implicated in prostate, breast, ovarian, gastric, lung, and pancreatic cancer as well as glioblastoma. Given SEMA3C's roles in development and its augmented expression in PCa, we hypothesized that SEMA3C promotes epithelial-to-mesenchymal transition (EMT) and stem-like phenotypes in prostate cells. In the present study we show that ectopic expression of SEMA3C in RWPE-1 promotes the upregulation of EMT and stem markers, heightened sphere-formation, and cell plasticity. In addition, we show that SEMA3C promotes migration and invasion in vitro and cell dissemination in vivo.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Daniel H F Hui
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Wilson W Lee
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Mingshu Dong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Tabitha Tombe
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ivy Z F Jiao
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Shahram Khosravi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Ario Takeuchi
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Larissa Ivanova
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Ralph Buttyan
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Michael E Cox
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
- Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
4
|
The potentialities proteomic analysis of ocular fluids and tissues in different ophthamic disordeers. OPHTHALMOLOGY JOURNAL 2016. [DOI: 10.17816/ov9129-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The article presents a review of current researches in using the proteomic analysis for different eye diseases diagnosis. Special attention is paid to tear fluid and aqueous humor mass-spectrometry results in primary open-angle glaucoma, and to the possibility of using this method for diagnosis at disease early stages.
Collapse
|
5
|
Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget 2016; 6:9313-26. [PMID: 25823654 PMCID: PMC4496219 DOI: 10.18632/oncotarget.3220] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/26/2015] [Indexed: 12/17/2022] Open
Abstract
The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue microarray (TMA) was constructed with paired primary, metastatic, and recurrent tumor tissues from 26 individual patients. CD44 expression in TMA was assessed by immunohistochemistry. Both the metastatic and recurrent ovarian cancer tissues expressed higher level of CD44 than the patient-matched primary tumor. A significant association has been shown between CD44 expression and both the disease free survival and overall survival. A strong increase of CD44 was found in the tumor recurrence of mouse model. Finally, when CD44 was knocked down, proliferation, migration/invasion activity, and spheroid formation were significantly suppressed, while drug sensitivity was enhanced. Thus, up-regulation of CD44 represents a crucial event in the development of metastasis, recurrence, and drug resistance to current treatments in ovarian cancer. Developing strategies to target CD44 may prevent metastasis, recurrence, and drug resistance in ovarian cancer.
Collapse
|
6
|
The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation. Int J Mol Sci 2015; 17:ijms17010003. [PMID: 26703587 PMCID: PMC4730250 DOI: 10.3390/ijms17010003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.
Collapse
|
7
|
Kokotas H, Kroupis C, Chiras D, Grigoriadou M, Lamnissou K, Petersen MB, Kitsos G. Biomarkers in primary open angle glaucoma. Clin Chem Lab Med 2013; 50:2107-19. [PMID: 22745021 DOI: 10.1515/cclm-2012-0048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/20/2012] [Indexed: 11/15/2022]
Abstract
Glaucoma, a leading cause of blindness worldwide, is currently defined as a disturbance of the structural or functional integrity of the optic nerve that causes characteristic atrophic changes in the optic nerve, which may lead to specific visual field defects over time. This disturbance usually can be arrested or diminished by adequate lowering of intraocular pressure (IOP). Glaucoma can be divided roughly into two main categories, ‘ open angle ’ and ‘ closed angle ’ glaucoma.Open angle, chronic glaucoma tends to progress at a slower rate and patients may not notice loss of vision until the disease has progressed significantly. Primary open angle glaucoma(POAG) is described distinctly as a multifactorial optic neuropathy that is chronic and progressive with a characteristic acquired loss of optic nerve fibers. Such loss develops in the presence of open anterior chamber angles, characteristic visual field abnormalities, and IOP that is too high for the healthy eye. It manifests by cupping and atrophy of the optic disc, in the absence of other known causes of glaucomatous disease. Several biological markers have been implicated with the disease. The purpose of this study was to summarize the current knowledge regarding the non-genetic molecular markers which have been predicted to have an association with POAG but have not yet been validated.
Collapse
Affiliation(s)
- Haris Kokotas
- Department of Genetics, Institute of Child Health , Aghia Sophia Children's Hospital, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2172-87. [PMID: 23031255 DOI: 10.1016/j.ajpath.2012.08.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 01/13/2023]
Abstract
Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.
Collapse
|
9
|
Spatio-temporal patterns of pancreatic cancer cells expressing CD44 isoforms on supported membranes displaying hyaluronic acid oligomers arrays. PLoS One 2012; 7:e42991. [PMID: 22916191 PMCID: PMC3419250 DOI: 10.1371/journal.pone.0042991] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/17/2012] [Indexed: 11/30/2022] Open
Abstract
In this paper, we designed a quantitative model of biological membranes by the deposition of planar lipid membranes on solid substrates (called supported membranes), and immobilized biotinylated oligomers of hyaluronic acid (oligo-HA, 6–8 disaccharide units in length) to the membrane surface via neutravidin cross-linkers. By controlling the self-assembly of biotinylated lipid anchors, the mean distance between the oligo-HA molecules on the membrane could be controlled to nm accuracy. The adhesion and motility of pancreatic adenocarcinoma cells expressing different splice variants of the HA-binding cell surface receptor CD44 on these surfaces were investigated quantitatively. The combination of label-free, time-lapse imaging of living cells and statistical analysis suggests that the static morphology (global shape and cytoskeleton remodeling) of cells, their stochastic morphological dynamics, and the probability of directed motion reflect the metastatic behaviour of the cancer cells.
Collapse
|
10
|
Meyer NH, Tripsianes K, Vincendeau M, Madl T, Kateb F, Brack-Werner R, Sattler M. Structural basis for homodimerization of the Src-associated during mitosis, 68-kDa protein (Sam68) Qua1 domain. J Biol Chem 2010; 285:28893-901. [PMID: 20610388 DOI: 10.1074/jbc.m110.126185] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sam68 (Src-associated during mitosis, 68 kDa) is a prototypical member of the STAR (signal transducer and activator of RNA) family of RNA-binding proteins. STAR proteins bind mRNA targets and modulate cellular processes such as cell cycle regulation and tissue development in response to extracellular signals. Sam68 has been shown to modulate alternative splicing of the pre-mRNAs of CD44 and Bcl-xL, which are linked to tumor progression and apoptosis. Sam68 and other STAR proteins recognize bipartite RNA sequences and are thought to function as homodimers. However, the structural and functional roles of the self-association are not known. Here, we present the solution structure of the Sam68 Qua1 homodimerization domain. Each monomer consists of two antiparallel alpha-helices connected by a short loop. The two subunits are arranged perpendicular to each other in an unusual four-helix topology. Mutational analysis of Sam68 in vitro and in a cell-based assay revealed that the Qua1 domain and residues within the dimerization interface are essential for alternative splicing of a CD44 minigene. Together, our results indicate that the Qua1 homodimerization domain is required for regulation of alternative splicing by Sam68.
Collapse
Affiliation(s)
- N Helge Meyer
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Nakajima K, Taniguchi K, Mutoh KI. Expression of CD44v6 as matrix-associated ectodomain in the bone development. J Vet Med Sci 2010; 72:1017-22. [PMID: 20339257 DOI: 10.1292/jvms.10-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.
Collapse
Affiliation(s)
- Kosei Nakajima
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Aomori, Japan
| | | | | |
Collapse
|
12
|
Gostjeva EV, Thilly WG. Stem cell stages and the origins of colon cancer: a multidisciplinary perspective. ACTA ACUST UNITED AC 2007; 1:243-51. [PMID: 17142861 DOI: 10.1385/scr:1:3:243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Analysis of historical age-specific colorectal cancer rates, present day age-specific colonic adenoma prevalence and the few reports of direct measurements of genetic change in human tissues as a function of age in adults have led to a new set of hypotheses about carcinogenesis. A key observation, that the calculated rate of growth of preneoplasia is equal to the calculated growth rate of the juvenile colon, suggested that tumor initiation blocks the developmental step by which growing juvenile stem cells are transformed into or replaced by adult maintenance stem cells. In this hypothesis the slowly growing adenomatous polyps would simply be patches of highly organized juvenile tissue modified by the mechanical constraints of surrounding nongrowing adult tissue. As juvenile tissue presumably grows by net increase in stem cells creating crypts, tumor promotion could be achieved by transformation of an initiated stem cell into a fetal stem cell that would express the program of rapid net growth and differentiation into the heterogeneous cell types of fetal colonic organogenesis. (One additional interpretation of data from observations of point mutations in adult lung epithelium is that rates of genetic change in juvenile stem cells are markedly higher than in adult maintenance stem cells.) Unfortunately, the concept of a "stem cell" undergoing staged transitions in organ development and blocked or reverse transitions in carcinogenesis has lacked the physical embodiment of a cell that could be recognized, isolated, and analyzed. In an attempt to overcome this impediment we set reexamined fetal and adult colonic tissue, adenomas, and adenocarcinomas using a novel histological preparation method. Gostjeva then discovered that fetal and neoplastic tissues share a set of cells distinguished by specific nuclear morphotypes that appear to cooperate in creating the elements of the fetal organ, preneoplastic, and neoplastic lesions. In particular, microscopic examination of fetal gut at 5-7 wk gestation reveals tubular syncytia containing opened-mouthed, bell-shaped nuclei that account for some 30% of the nuclei in the protoorgan. These peculiar nuclei undergo both symmetric and asymmetric nuclear fissions, the latter creating all of the other nuclear morphotypes. These nuclear fissions are "amitotic" insofar as no general chromosome condensation is observed. Bell-shaped nuclei are rarely found in adult colonic crypt bases but are found in preneoplasia and neoplasia.
Collapse
|
13
|
Cheng C, Sharp PA. Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol Cell Biol 2006; 26:362-70. [PMID: 16354706 PMCID: PMC1317625 DOI: 10.1128/mcb.26.1.362-370.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiple isoforms of the transmembrane glycoprotein CD44 are produced by alternative RNA splicing. Expression of CD44 isoforms containing variable 5 exon (v5) correlates with enhanced malignancy and invasiveness of some tumors. Here we demonstrate that SRm160, a splicing coactivator, regulates CD44 alternative splicing in a Ras-dependent manner. Overexpression of SRm160 stimulates inclusion of CD44 v5 when Ras is activated. Conversely, small interfering RNA (siRNA)-mediated silencing of SRm160 significantly reduces v5 inclusion. Immunoprecipitation shows association of SRm160 with Sam68, a protein that also stimulates v5 inclusion in a Ras-dependent manner, suggesting that these two proteins interact to regulate CD44 splicing. Importantly, siRNA-mediated depletion of CD44 v5 decreases tumor cell invasion. Reduction of SRm160 by siRNA transfection downregulates the endogenous levels of CD44 isoforms, including v5, and correlates with a decrease in tumor cell invasiveness.
Collapse
Affiliation(s)
- Chonghui Cheng
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | | |
Collapse
|
14
|
Sell S. Cancer Stem Cells and Differentiation Therapy. Tumour Biol 2006; 27:59-70. [PMID: 16557043 DOI: 10.1159/000092323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 11/08/2005] [Indexed: 11/19/2022] Open
Abstract
Cancers arise from stem cells in adult tissues and the cells that make up a cancer reflect the same stem cell --> progeny --> differentiation progression observed in normal tissues. All adult tissues are made up of lineages of cells consisting of tissue stem cells and their progeny (transit-amplifying cells and terminally differentiated cells); the number of new cells produced in normal tissue lineages roughly equals the number of old cells that die. Cancers result from maturation arrest of this process, resulting in continued proliferation of cells and a failure to differentiate and die. The biological behavior, morphological appearance, and clinical course of a cancer depend on the stage of maturation at which the genetic lesion is activated. This review makes a comparison of cancer cells to embryonic stem cells and to adult tis sue stem cells while addressing two basic questions: (1) Where do cancers come from?, and (2) How do cancers grow? The answers to these questions are critical to the development of approaches to the detection, prevention, and treatment of cancer.
Collapse
Affiliation(s)
- Stewart Sell
- New York State Health Department, Wadsworth Center and Ordway Research Institute, Albany, NY 12201, USA.
| |
Collapse
|
15
|
Abstract
It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.
Collapse
Affiliation(s)
- R Marhaba
- Department of Tumor Progression and Immune Defense, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | |
Collapse
|
16
|
Fieber C, Baumann P, Vallon R, Termeer C, Simon JC, Hofmann M, Angel P, Herrlich P, Sleeman JP. Hyaluronan-oligosaccharide-induced transcription of metalloproteases. J Cell Sci 2004; 117:359-67. [PMID: 14657275 DOI: 10.1242/jcs.00831] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated dendritic epidermal Langerhans cells and metastatic tumour cells share many properties. Both cell types can invade the surrounding tissue, enter the lymphatic system and travel to regional lymph nodes. We have recently shown that fragments of the extracellular matrix component hyaluronan, which are typically produced at sites of inflammation, can activate dendritic cells. Upon activation, dendritic cells upregulate expression of matrix metalloproteases (MMPs). These observations prompted us to investigate whether exposure to hyaluronan fragments also induces MMP expression in tumour cells. Here, we report that MMP-9, MMP-13 and urokinase plasminogen activator are upregulated in murine 3LL tumour cells after exposure to mixed-size hyaluronan. Similarly upregulated MMP-9 and MMP-13 expression was observed in primary fibroblasts. By using size-fractionated hyaluronan preparations, we show that the enhanced expression of MMP-9 and MMP-13 is only induced by small hyaluronan (HA) fragments. Although our data suggest that HA-fragment-induced MMP-9 and MMP-13 expression is receptor mediated, they rule out an involvement of the hyaluronan receptors CD44, RHAMM/IHAP and TLR-4. Finally, we show that HA fragment-induced MMP-9 transcription is mediated via NF-κB. Our results suggest that the metastasis-associated HA degradation in tumours might promote invasion by inducing MMP expression.
Collapse
Affiliation(s)
- Christina Fieber
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, and University of Karlsruhe, Institute of Genetics, PO Box 3640, 76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sherman LS, Struve JN, Rangwala R, Wallingford NM, Tuohy TMF, Kuntz C. Hyaluronate-based extracellular matrix: keeping glia in their place. Glia 2002; 38:93-102. [PMID: 11948803 DOI: 10.1002/glia.10053] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Reisman DN, Strobeck MW, Betz BL, Sciariotta J, Funkhouser W, Murchardt C, Yaniv M, Sherman LS, Knudsen ES, Weissman BE. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene 2002; 21:1196-207. [PMID: 11850839 DOI: 10.1038/sj.onc.1205188] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2001] [Revised: 11/26/2001] [Accepted: 11/26/2001] [Indexed: 02/01/2023]
Abstract
Mammalian cells express two homologs of the SWI2 subunit of the SWI/SNF chromatin-remodeling complex called BRG1 and BRM. Whether the SWI/SNF complexes formed by these two subunits perform identical or different functions remains an important question. In this report, we show concomitant down-regulation of BRG1 and BRM in six human tumor cell lines. This down-regulation occurs at the level of mRNA abundance. We tested whether BRM could affect aberrant cellular functions attributed to BRG1 in tumor cell lines. By transient transfection, we found that BRM can restore RB-mediated cell cycle arrest, induce expression of CD44 protein and suppress Cyclin A expression. Therefore, BRM may be consistently down-regulated with BRG1 during neoplastic progression because they share some redundant functions. However, assorted tissues from BRM null/BRG1-positive mice lack CD44 expression, suggesting that BRM-containing SWI/SNF complexes regulate expression of this gene under physiological conditions. Our studies further define the mechanism by which chromatin-remodeling complexes participate in RB-mediated cell cycle arrest and provide additional novel evidence that the functions of SWI/SNF complexes containing BRG1 or BRM are not completely interchangeable.
Collapse
Affiliation(s)
- David N Reisman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
CD44 is a cell surface glycoprotein expressed on different cell types that functions in lymphocyte activation and homing, extracellular matrix adhesion and cellular migration. CD44 is encoded by a single gene composed of at least 20 exons. The standard CD44 protein (CD44S or CD44H) is the hematopoietic form of CD44 in lymphoid cells. Variant isoforms (designated from v1 to v10) are formed by addition of new exons to the extracellular domain. High levels of CD44v6 expression has been observed in some tumors and are associated with metastatic spread. The aim of the present study was to investigate and evaluate expression of the CD44v6 and v6-containing variants as a possible marker in chronic myeloid leukemia and lymphoma by reverse transcription-polymerase chain reaction. CD44 exon v6 was detected in all patients and all individuals in the control group. CD44v6-v10 mRNA was observed in 25 patients but in none of the subjects in the control group. CD44v6/v9-10, CD44v6-v7, CD44v6/v10 transcripts were detected in 11, 6, and 2 patients, respectively. CD44v6-7/v9-10 transcripts were not observed in either the patients or the healthy individuals. We conclude that CD44v6-v10 expression may be associated with hematologic malignancies.
Collapse
Affiliation(s)
- Elif Akisik
- Istanbul University, Department of Basic Oncology, Oncology Institute Capa, Istanbul, 34390, Turkey
| | | | | |
Collapse
|
20
|
Sherman LS, Rizvi TA, Karyala S, Ratner N. CD44 enhances neuregulin signaling by Schwann cells. J Cell Biol 2000; 150:1071-84. [PMID: 10973996 PMCID: PMC2175255 DOI: 10.1083/jcb.150.5.1071] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1999] [Accepted: 07/11/2000] [Indexed: 11/22/2022] Open
Abstract
We describe a key role for the CD44 transmembrane glycoprotein in Schwann cell-neuron interactions. CD44 proteins have been implicated in cell adhesion and in the presentation of growth factors to high affinity receptors. We observed high CD44 expression in early rat neonatal nerves at times when Schwann cells proliferate but low expression in adult nerves, where CD44 was found in some nonmyelinating Schwann cells and to varying extents in some myelinating fibers. CD44 constitutively associated with erbB2 and erbB3, receptor tyrosine kinases that heterodimerize and signal in Schwann cells in response to neuregulins. Moreover, CD44 significantly enhanced neuregulin-induced erbB2 phosphorylation and erbB2-erbB3 heterodimerization. Reduction of CD44 expression in vitro resulted in loss of Schwann cell-neurite adhesion and Schwann cell apoptosis. CD44 is therefore crucial for maintaining neuron-Schwann cell interactions at least partly by facilitating neuregulin-induced erbB2-erbB3 activation.
Collapse
Affiliation(s)
- L S Sherman
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
The CD44 proteins form a ubiquitously expressed family of cell surface adhesion molecules involved in cell-cell and cell-matrix interactions. The multiple protein isoforms are encoded by a single gene by alternative splicing and are further modified by a range of post-translational modifications. CD44 proteins are single chain molecules comprising an N-terminal extracellular domain, a membrane proximal region, a transmembrane domain, and a cytoplasmic tail. The CD44 gene has only been detected in higher organisms and the amino acid sequence of most of the molecule is highly conserved between mammalian species. The principal ligand of CD44 is hyaluronic acid, an integral component of the extracellular matrix. Other CD44 ligands include osteopontin, serglycin, collagens, fibronectin, and laminin. The major physiological role of CD44 is to maintain organ and tissue structure via cell-cell and cell-matrix adhesion, but certain variant isoforms can also mediate lymphocyte activation and homing, and the presentation of chemical factors and hormones. Increased interest has been directed at the characterisation of this molecule since it was observed that expression of multiple CD44 isoforms is greatly upregulated in neoplasia. CD44, particularly its variants, may be useful as a diagnostic or prognostic marker of malignancy and, in at least some human cancers, it may be a potential target for cancer therapy. This review describes the structure of the CD44 gene and discusses some of its roles in physiological and pathological processes.
Collapse
Affiliation(s)
- S Goodison
- UCSD Cancer Center, University of California, La Jolla 92093-0658, USA
| | | | | |
Collapse
|
22
|
Abstract
Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.
Collapse
Affiliation(s)
- M E Berens
- Neuro-Oncology Laboratory, Barrow Neurological Institute, Saint Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA.
| | | |
Collapse
|
23
|
Affiliation(s)
- S Weg-Remers
- Department of Internal Medicine II, University of the Saarland, Homburg, Germany.
| | | | | | | |
Collapse
|
24
|
Weg-Remers S, Anders M, von Lampe B, Riecken EO, Schüder G, Feifel G, Zeitz M, Stallmach A. Decreased expression of CD44 splicing variants in advanced colorectal carcinomas. Eur J Cancer 1998; 34:1607-11. [PMID: 9893637 DOI: 10.1016/s0959-8049(98)00177-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
CD44v6 expression appears to be associated with adverse prognosis and propensity for metastasis in patients with colorectal cancer. However, expression of CD44 variants in different tumour stages has been poorly characterised. CD44 variant expression was investigated in normal colonic mucosa (n = 36), colorectal adenomas (n = 15), carcinomas (n = 62) and metastases (n = 6) by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blotting with exon-specific probes. High frequencies of CD44 standard (CD44s) and CD44 epithelial (CD44e) were observed in normal and neoplastic tissue. CD44v2 was seen predominantly in adenomas (27%) and UICCI carcinomas (29%). CD44v5 expression was low in normal mucosa (3%), higher in adenomas and carcinomas (29-33%), independent of tumour stage. CD44v6 expression was low in normal mucosa (6%) and higher in adenomas (47%) and carcinomas (42%). Surprisingly, a significant decrease of CD44v6 was observed in metastatic primary tumours (8%) and metastases (17%) (UICCIV) (P < or = 0.05). Therefore, the concept of CD44v6 conferring metastatic potential to malignant cells cannot be supported by our data.
Collapse
Affiliation(s)
- S Weg-Remers
- Department of Internal Medicine II, University of the Saarland, Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
König H, Ponta H, Herrlich P. Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 1998; 17:2904-13. [PMID: 9582284 PMCID: PMC1170631 DOI: 10.1093/emboj/17.10.2904] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing of pre-mRNA is a fundamental mechanism of differential gene expression in that it can give rise to functionally distinct proteins from a single gene, according to the developmental or physiological state of cells in multicellular organisms. In the pre-mRNA of the cell surface molecule CD44, the inclusion of up to 10 variant exons (v1-v10) is regulated during development, upon activation of lymphocytes and dendritic cells, and during tumour progression. Using minigene constructs containing CD44 exon v5, we have discovered exonic RNA elements that couple signal transduction to alternative splicing. They form a composite splice regulator encompassing an exon recognition element and splice silencer elements. Both type of elements are necessary to govern cell type-specific inclusion of the exon as well as inducible inclusion in T cells after stimulation by concanavalin A, by Ras signalling or after activation of protein kinase C by phorbol ester. Inducible splicing does not depend on de novo protein synthesis. The coupling of signal transduction to alternative splicing by such elements probably represents the mechanism whereby splice patterns of genes are established during development and can be changed under physiological and pathological conditions.
Collapse
Affiliation(s)
- H König
- Forschungzentrum Karlsruhe, Institut für Genetik, Karlsruhe, Germany
| | | | | |
Collapse
|
26
|
Sherman L, Wainwright D, Ponta H, Herrlich P. A splice variant of CD44 expressed in the apical ectodermal ridge presents fibroblast growth factors to limb mesenchyme and is required for limb outgrowth. Genes Dev 1998; 12:1058-71. [PMID: 9531542 PMCID: PMC316674 DOI: 10.1101/gad.12.7.1058] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Signals from the apical ectodermal ridge (AER) of the developing vertebrate limb, including fibroblast growth factor-8 (FGF-8), can maintain limb mesenchymal cells in a proliferative state. We report here that a specific CD44 splice variant is crucial for the proliferation of these mesenchymal cells. Epitopes carried by this variant colocalize temporally and spatially with FGF-8 in the AER throughout early limb development. A splice variant containing the same sequences expressed on model cells binds both FGF-4 and FGF-8 and stimulates mesenchymal cells in vitro. When applied to the AER, an antibody against a specific CD44 epitope blocks FGF presentation and inhibits limb outgrowth. Therefore, CD44 is necessary for limb development and functions in a novel growth factor presentation mechanism likely relevant in other physiological and pathological situations where a cell surface protein presents a signaling molecule to a neighboring cell.
Collapse
Affiliation(s)
- L Sherman
- Forschungszentrum Karlsruhe, Institut für Genetik, D-76021 Karlsruhe, Germany
| | | | | | | |
Collapse
|
27
|
Dall P, Hekele A, Beckmann MW, Bender HG, Herrlich P, Ponta H. Efficient lysis of CD44v7/8-presenting target cells by genetically engineered cytotoxic T-lymphocytes--a model for immunogene therapy of cervical cancer. Gynecol Oncol 1997; 66:209-16. [PMID: 9264564 DOI: 10.1006/gyno.1997.4777] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Variant proteins of the CD44 surface glycoprotein family are expressed on many different human tumors and their lymph node metastases. An epitope encoded by sequences of variant exons CD44v7 and v8 and recognized by the monoclonal antibody VFF17 is frequently detected in cervical cancer, whereas the normal cervical epithelium lacks expression of this epitope. We have developed an immunotherapeutic approach for cervical cancer based on the expression of this CD44v7/8 epitope. The single chain antigen-binding fragment of VFF17 was fused to a signal transducing protein (zeta-chain) of the T-cell receptor complex (TCR) and was introduced into a retroviral gene transfer vector. Gene transfer was applied to the murine cytotoxic T-cell line cl96. All recombinant clones expressed the fusion protein on their cell surface. Functionality of the recombinant fusion protein was tested by subjection of several recombinant clones to in vitro cytotoxicity assays. CD44v7/8-expressing target cells were killed efficiently by reprogrammed cl96 in an MHC-independent fashion, whereas CD44v7/ 8-negative cells were not affected. These transfected T cell lines will now be tested in vivo using immune-deficient mice bearing CD44v7/8-expressing tumors.
Collapse
Affiliation(s)
- P Dall
- Department of Obstetrics and Gynecology, University Medical Center Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Komminoth P, Seelentag WK, Saremaslani P, Heitz PU, Roth J. CD44 isoform expression in the diffuse neuroendocrine system. II. Benign and malignant tumors. Histochem Cell Biol 1996; 106:551-62. [PMID: 8985743 DOI: 10.1007/bf02473270] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The membrane glycoprotein CD44 may be associated with aggressive behavior, dissemination, and poor prognosis of a variety of human tumors. In order to extend our knowledge on the expression and significance of CD44 in cells of the dispersed neuroendocrine system we investigated a spectrum of 134 neuroendocrine tumors, including pituitary adenomas, medullary thyroid carcinomas, parathyroid adenomas, pheochromocytomas, neuroblastomas, small-cell lung carcinomas, and bronchopulmonary, pancreatic, and gastrointestinal neuroendocrine tumors immunohistochemically for CD44 standard and variant exon-encoded gene products (CD44v3, -v4, -v5, -v6, -v9). Furthermore, we compared protein expression with that of CD44 mRNA by reverse-transcriptase PCR and Southern blot hybridization in a subset of tumors. Our results show that CD44 expression is correlated with the "histogenetic origin" of the appropriate neuroendocrine neoplasm. Endoderm-derived tumors generally express 3'-end CD44 variant exon-containing isoforms, whereas neural crest-derived tumors rarely are positive for CD44. Furthermore, we provide evidence that CD44 expression is not correlated with metastatic disease or a particular hormonal phenotype but exhibits an association with the degree of cellular differentiation. Thus, CD44 is not useful as marker for malignancy or prognosis. The number of patients with clinical follow-up data in our study was too small to allow definite conclusions about a possible correlation between CD44 expression and prognosis. But CD44 may help to better classify neoplasms with an unclear neuroendocrine phenotype.
Collapse
Affiliation(s)
- P Komminoth
- Department of Pathology, University of Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Hekele A, Dall P, Moritz D, Wels W, Groner B, Herrlich P, Ponta H. Growth retardation of tumors by adoptive transfer of cytotoxic T lymphocytes reprogrammed by CD44v6-specific scFv:zeta-chimera. Int J Cancer 1996; 68:232-8. [PMID: 8900434 DOI: 10.1002/(sici)1097-0215(19961009)68:2<232::aid-ijc16>3.0.co;2-c] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Variants of the CD44 protein family containing sequences encoded by variant exon 6 (v6) are involved in the metastatic spread of rat and human tumors. The rat-specific antibody 1.1ASML, which recognizes a v6 epitope, interferes with metastatic dissemination of a rat pancreatic carcinoma. The single-chain antigen-binding fragment of this monoclonal antibody was fused to the zeta-chain of the T-cell receptor complex. The appropriate fusion gene was incorporated into a retroviral gene transfer vector. Murine cytotoxic T lymphocytes (CTLs) were infected, and cellular clones which express the single-chain zeta-chain fusion protein on their cell surface were selected. These CTLs are not MHC-restricted in their CD44v6 recognition and exhibit in vitro lytic activity toward cells expressing CD44 variants comprising exon v6. Tumor cell xenografts grown in athymic nude mice are suppressed in their growth upon infusion of the genetically manipulated CTLs. Our data indicate that the CD44v6 epitope is an effective target for immune tumor therapy and demonstrate the efficacy of genetically engineered CTLs in targeting tumors expressing such epitopes.
Collapse
Affiliation(s)
- A Hekele
- Research Center Karlsruhe, Institute of Genetics, Germany
| | | | | | | | | | | | | |
Collapse
|