1
|
Abstract
Melanopsin is a light-activated G protein coupled receptor that is expressed widely across phylogeny. In mammals, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs), which are especially important for "non-image" visual functions that include the regulation of circadian rhythms, sleep, and mood. Photochemical and electrophysiological experiments have provided evidence that melanopsin has at least two stable conformations and is thus multistable, unlike the monostable photopigments of the classic rod and cone photoreceptors. Estimates of melanopsin's properties vary, challenging efforts to understand how the molecule influences vision. This article seeks to reconcile disparate views of melanopsin and offer a practical guide to melanopsin's complexities.
Collapse
Affiliation(s)
- Alan J. Emanuel
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA, USA
- Present address: Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA, USA
| |
Collapse
|
2
|
Corbo JC. Vitamin A 1/A 2 chromophore exchange: Its role in spectral tuning and visual plasticity. Dev Biol 2021; 475:145-155. [PMID: 33684435 DOI: 10.1016/j.ydbio.2021.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Vertebrate rod and cone photoreceptors detect light via a specialized organelle called the outer segment. This structure is packed with light-sensitive molecules known as visual pigments that consist of a G-protein-coupled, seven-transmembrane protein known as opsin, and a chromophore prosthetic group, either 11-cis retinal ('A1') or 11-cis 3,4-didehydroretinal ('A2'). The enzyme cyp27c1 converts A1 into A2 in the retinal pigment epithelium. Replacing A1 with A2 in a visual pigment red-shifts its spectral sensitivity and broadens its bandwidth of absorption at the expense of decreased photosensitivity and increased thermal noise. The use of vitamin A2-based visual pigments is strongly associated with the occupation of aquatic habitats in which the ambient light is red-shifted. By modulating the A1/A2 ratio in the retina, an organism can dynamically tune the spectral sensitivity of the visual system to better match the predominant wavelengths of light in its environment. As many as a quarter of all vertebrate species utilize A2, at least during a part of their life cycle or under certain environmental conditions. A2 utilization therefore represents an important and widespread mechanism of sensory plasticity. This review provides an up-to-date account of the A1/A2 chromophore exchange system.
Collapse
Affiliation(s)
- Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, 63110, United States.
| |
Collapse
|
3
|
Schapiro I. The Origin of Bond Selectivity and Excited-State Reactivity in Retinal Analogues. J Phys Chem A 2016; 120:3353-65. [DOI: 10.1021/acs.jpca.6b00701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Igor Schapiro
- Fritz Haber
Center for Molecular
Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Gensch T, Strassburger JM, Gärtner W, Braslavsky SE. Volume and Enthalpy Changes upon Photoexcitation of Bovine Rhodopsin Derived from Optoacoustic Studies by Using an Equilibrium between Bathorhodopsin and Blue-Shifted Intermediate. Isr J Chem 2013. [DOI: 10.1002/ijch.199800025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
deGrip WJ, Bovee-Geurts PHM, Wang Y, Verhoeven MA, Lugtenburg J. Cyclopropyl and isopropyl derivatives of 11-cis and 9-cis retinals at C-9 and C-13: subtle steric differences with major effects on ligand efficacy in rhodopsin. JOURNAL OF NATURAL PRODUCTS 2011; 74:383-390. [PMID: 21309593 DOI: 10.1021/np100744v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Retinal is the natural ligand (chromophore) of the vertebrate rod visual pigment. It occurs in either the 11-cis (rhodopsin) or the 9-cis (isorhodopsin) configuration. In its evolution to a G protein coupled photoreceptor, rhodopsin has acquired exceptional photochemical properties. Illumination isomerizes the chromophore to the all-trans isomer, which acts as a full agonist. This process is extremely efficient, and there is abundant evidence that the C-9 and C-13 methyl groups of retinal play a pivotal role in this process. To examine the steric limits of the C-9 and C-13 methyl binding pocket of the binding site, we have prepared C-9 and C-13 cyclopropyl and isopropyl derivatives of its native ligands and of α-retinal at C-9. Most isopropyl analogues show very poor binding, except for 9-cis-13-isopropylretinal. Most cyclopropyl derivatives exhibit intermediate binding activity, except for 9-cis-13-cyclopropylretinal, which presents good binding activity. In general, the binding site shows preference for the 9-cis analogues over the 11-cis analogues. In fact, 13-isopropyl-9-cis-retinal acts as a superagonist after illumination. Another surprising finding was that 9-cyclopropylisorhodopsin is more like native rhodopsin with respect to spectral and photochemical properties, whereas 9-cyclopropylrhodopsin behaves more like native isorhodopsin in these aspects.
Collapse
Affiliation(s)
- Willem J deGrip
- Department of Biochemistry, UMCN 286, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Bovee-Geurts PHM, Fernández Fernández I, Liu RSH, Mathies RA, Lugtenburg J, DeGrip WJ. Fluoro Derivatives of Retinal Illuminate the Decisive Role of the C12-H Element in Photoisomerization and Rhodopsin Activation. J Am Chem Soc 2009; 131:17933-42. [DOI: 10.1021/ja907577p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petra H. M. Bovee-Geurts
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Isabelle Fernández Fernández
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Robert S. H. Liu
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Richard A. Mathies
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Johan Lugtenburg
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| | - Willem J. DeGrip
- Department of Biochemistry, UMCN 286, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands, Department of BioOrganic Photochemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Department of Chemistry, University of Hawaii at Manao, 2545 The Mall, Honolulu, Hawaii 96822, and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
7
|
Do MTH, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, Yau KW. Photon capture and signalling by melanopsin retinal ganglion cells. Nature 2008; 457:281-7. [PMID: 19118382 PMCID: PMC2794210 DOI: 10.1038/nature07682] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 12/08/2008] [Indexed: 11/18/2022]
Abstract
A subset of retinal ganglion cells has recently been discovered to be intrinsically photosensitive, with melanopsin as the pigment. These cells project primarily to brain centers for non-image-forming visual functions such as the pupillary light reflex and circadian photoentrainment. How well they signal intrinsic light absorption to drive behavior remains unclear. Here we report fundamental parameters governing their intrinsic light responses and associated spike generation. The membrane density of melanopsin is 104-fold lower than that of rod and cone pigments, resulting in a very low photon-catch and a phototransducing role only in relatively bright light. Nonetheless, each captured photon elicits a large and extraordinarily prolonged response, with a unique shape among known photoreceptors. Remarkably, like rods, these cells are capable of signalling single-photon absorption. A flash causing a few hundred isomerized melanopsin molecules in a retina is sufficient for reaching threshold for the pupillary light reflex.
Collapse
Affiliation(s)
- Michael Tri H Do
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang Y, Bovee-Geurts PHM, Lugtenburg J, DeGrip WJ. Alpha-retinals as Rhodopsin ChromophoresPreference for the 9-ZConfiguration and Partial Agonist Activity. Photochem Photobiol 2008; 84:889-94. [DOI: 10.1111/j.1751-1097.2008.00321.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Jokela-Määttä M, Smura T, Aaltonen A, Ala-Laurila P, Donner K. Visual pigments of Baltic Sea fishes of marine and limnic origin. Vis Neurosci 2007; 24:389-98. [PMID: 17822578 DOI: 10.1017/s0952523807070459] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Accepted: 04/19/2007] [Indexed: 11/05/2022]
Abstract
Absorbance spectra of rods and some cones were measured by microspectrophotometry in 22 fish species from the brackish-water of the Baltic Sea, and when applicable, in the same species from the Atlantic Ocean (3 spp.), the Mediterranean Sea (1 sp.), or Finnish fresh-water lakes (9 spp.). The main purpose was to study whether there were differences suggesting spectral adaptation of rod vision to different photic environments during the short history (<104years) of postglacial isolation of the Baltic Sea and the Finnish lakes. Rod absorbance spectra of the Baltic subspecies/populations of herring (Clupea harengus membras), flounder (Platichthys flesus), and sand goby (Pomatoschistus minutus) were all long-wavelength-shifted (9.8, 1.9, and 5.3 nm, respectively, at the wavelength of maximum absorbance, λmax) compared with their truly marine counterparts, consistent with adaptation for improved quantum catch, and improved signal-to-noise ratio of vision in the Baltic light environment. Judged by the shape of the spectra, the chromophore was pure A1 in all these cases; hence the differences indicate evolutionary tuning of the opsin. In no species of fresh-water origin did we find significant opsin-based spectral shifts specific to the Baltic populations, only spectral differences due to varying A1/A2 chromophore ratio in some. For most species, rod λmaxfell within a wavelength range consistent with high signal-to-noise ratio of vision in the spectral conditions prevailing at depths where light becomes scarce in the respective waters. Exceptions were sandeels in the Baltic Sea, which are active only in bright light, and all species in a “brown” lake, where rod λmaxlay far below the theoretically optimal range.
Collapse
Affiliation(s)
- Mirka Jokela-Määttä
- Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
10
|
Brockway LM, Benos DJ, Keyser KT, Kraft TW. Blockade of amiloride-sensitive sodium channels alters multiple components of the mammalian electroretinogram. Vis Neurosci 2005; 22:143-51. [PMID: 15935107 DOI: 10.1017/s0952523805222034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Indexed: 11/07/2022]
Abstract
Retinal neurons and Muller cells express amiloride-sensitive Na+ channels (ASSCs). Although all major subunits of these channels are expressed, their physiological role is relatively unknown in this system. In the present study, we used the electroretinogram (ERG) recorded from anesthetized rabbits and isolated rat and rabbit retina preparations to investigate the physiological significance of ASSCs in the retina. Based upon our previous study showing expression of alpha-ENaC and functional amiloride-sensitive currents in rabbit Muller cells, we expected changes in Muller cell components of the ERG. However, we observed changes in other components of the ERG as well. The presence of amiloride elicited changes in all major components of the ERG; the a-wave, b-wave, and d-wave (off response) were enhanced, while there was a reduction in the amplitude of the Muller cell response (slow PIII). These results suggest that ASSCs play an important role in retinal function including neuronal and Muller cell physiology.
Collapse
Affiliation(s)
- Laura M Brockway
- Vision Science Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | |
Collapse
|
11
|
Vanhoutte KJA, Stavenga DG. Visual pigment spectra of the comma butterfly, Polygonia c-album, derived from in vivo epi-illumination microspectrophotometry. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:461-73. [PMID: 15754191 DOI: 10.1007/s00359-005-0608-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 01/17/2005] [Accepted: 01/20/2005] [Indexed: 10/25/2022]
Abstract
The visual pigments in the compound eye of the comma butterfly, Polygonia c-album, were investigated in a specially designed epi-illumination microspectrophotometer. Absorption changes due to photochemical conversions of the visual pigments, or due to light-independent visual pigment decay and regeneration, were studied by measuring the eye shine, i.e., the light reflected from the tapetum located in each ommatidium proximal to the visual pigment-bearing rhabdom. The obtained absorbance difference spectra demonstrated the dominant presence of a green visual pigment. The rhodopsin and its metarhodopsin have absorption peak wavelengths at 532 nm and 492 nm, respectively. The metarhodopsin is removed from the rhabdom with a time constant of 15 min and the rhodopsin is regenerated with a time constant of 59 min (room temperature). A UV rhodopsin with metarhodopsin absorbing maximally at 467 nm was revealed, and evidence for a blue rhodopsin was obtained indirectly.
Collapse
Affiliation(s)
- Kurt J A Vanhoutte
- Department of Neurobiophysics, University of Groningen, Nijenborgh 4, 9747, Groningen, the Netherlands
| | | |
Collapse
|
12
|
Cilluffo MC, Matthews HR, Brockerhoff SE, Fain GL. Light-induced Ca2+ release in the visible cones of the zebrafish. Vis Neurosci 2005; 21:599-609. [PMID: 15579223 DOI: 10.1017/s0952523804214092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Indexed: 11/06/2022]
Abstract
We used suction-pipette recording and fluo-4 fluorescence to study light-induced Ca2+ release from the visible double cones of zebrafish. In Ringer, light produces a slow decrease in fluorescence which can be fitted by the sum of two decaying exponentials with time constants of 0.5 and 3.8 s. In 0Ca2+-0Na+ solution, for which fluxes of Ca2+ across the outer segment plasma membrane are greatly reduced, light produces a slow increase in fluorescence. Both the decrease and increase are delayed after incorporation of the Ca2+ chelator BAPTA, indicating that both are produced by a change in Ca2+. If the Ca2+ pool is first released by bright light in 0Ca2+-0Na+ solution and the cone returned to Ringer, the time course of Ca2+ decline is much faster than in Ringer without previous light exposure. This indicates that the time constants of 0.5 and 3.8 s actually reflect a sum of Na+/Ca2+-K+ exchange and light-induced release of Ca2+. The Ca2+ released by light appears to come from at least two sites, the first comprising 66% of the total pool and half-released by bleaching 4.8% of the pigment. Release of the remaining Ca2+ from the second site requires the bleaching of nearly all of the pigment. If, after release, the cone is maintained in darkness, a substantial fraction of the Ca2+ returns to the release pool even in the absence of pigment regeneration. The light-induced release of Ca2+ can produce a modulation of the dark current as large as 0.75 pA independently of the normal transduction cascade, though the rise time of the current is considerably slower than the normal light response. These experiments show that Ca2+ can be released within the cone outer segment by light intensities within the physiological range of photopic vision. The role this Ca2+ release plays remains unresolved.
Collapse
Affiliation(s)
- Marianne C Cilluffo
- Department of Physiological Science, University of California-Los Angeles, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
13
|
Carravetta M, Zhao X, Johannessen OG, Lai WC, Verhoeven MA, Bovee-Geurts PHM, Verdegem PJE, Kiihne S, Luthman H, de Groot HJM, deGrip WJ, Lugtenburg J, Levitt MH. Protein-Induced Bonding Perturbation of the Rhodopsin Chromophore Detected by Double-Quantum Solid-State NMR. J Am Chem Soc 2004; 126:3948-53. [PMID: 15038749 DOI: 10.1021/ja039390q] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have obtained carbon-carbon bond length data for the functional retinylidene chromophore of rhodopsin, with a spatial resolution of 3 pm. The very high resolution was obtained by performing double-quantum solid-state NMR on a set of noncrystalline isotopically labelled bovine rhodopsin samples. We detected localized perturbations of the carbon-carbon bond lengths of the retinylidene chromophore. The observations are consistent with a model in which the positive charge of the protonated Schiff base penetrates into the polyene chain and partially concentrates around the C13 position. This coincides with the proximity of a water molecule located between the glutamate-181 and serine-186 residues of the second extracellular loop, which is folded back into the transmembrane region. These measurements support the hypothesis that the polar residues of the second extracellular loop and the associated water molecule assist the rapid selective photoisomerization of the retinylidene chromophore by stabilizing a partial positive charge in the center of the polyene chain.
Collapse
Affiliation(s)
- Marina Carravetta
- Physical Chemistry Division, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 2003; 100:13940-5. [PMID: 14615590 PMCID: PMC283525 DOI: 10.1073/pnas.1936192100] [Citation(s) in RCA: 1797] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial-type rhodopsins are found in archaea, prokaryotes, and eukaryotes. Some of them represent membrane ion transport proteins such as bacteriorhodopsin, a light-driven proton pump, or channelrhodopsin-1 (ChR1), a recently identified light-gated proton channel from the green alga Chlamydomonas reinhardtii. ChR1 and ChR2, a related microbial-type rhodopsin from C. reinhardtii, were shown to be involved in generation of photocurrents of this green alga. We demonstrate by functional expression, both in oocytes of Xenopus laevis and mammalian cells, that ChR2 is a directly light-switched cation-selective ion channel. This channel opens rapidly after absorption of a photon to generate a large permeability for monovalent and divalent cations. ChR2 desensitizes in continuous light to a smaller steady-state conductance. Recovery from desensitization is accelerated by extracellular H+ and negative membrane potential, whereas closing of the ChR2 ion channel is decelerated by intracellular H+. ChR2 is expressed mainly in C. reinhardtii under low-light conditions, suggesting involvement in photoreception in dark-adapted cells. The predicted seven-transmembrane alpha helices of ChR2 are characteristic for G protein-coupled receptors but reflect a different motif for a cation-selective ion channel. Finally, we demonstrate that ChR2 may be used to depolarize small or large cells, simply by illumination.
Collapse
Affiliation(s)
- Georg Nagel
- Max-Planck-Institut für Biophysik, Marie-Curie-Strasse 15, 60439 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The primary event in vision is the light-driven cis-trans isomerization of the 11-cis-retinal chromophore in the G-protein coupled receptor rhodopsin. Early measurements showed that this photoisomerization has a reaction quantum yield phi of approximately 0.67 [Dartnall (1936) Proc. R. Soc. A 156, 158-170; Dartnall (1968) Vision Res. 8, 339-358] and suggested that the quantum yield was wavelength independent [Schneider (1939) Proc. Natl. Acad. Sci. U.S.A. 170, 102-112]. Here we more accurately determine phi(500) = 0.65 +/- 0.01 and reveal that phi surprisingly depends on the wavelength of the incident light. Although there is no difference in the quantum yield between 450 and 480 nm, the quantum yield falls significantly as the photon energy is reduced below 20 000 cm(-1) (500 nm). At the reddest wavelength measured (570 nm), the quantum yield is reduced by 5 +/- 1% relative to the 500 nm value. These experiments correct the long-held presumption that the quantum yield in vision is wavelength independent, and support the hypothesis that the 200 fs photoisomerization reaction that initiates vision is dictated by nonstationary excited-state vibrational wave packet dynamics.
Collapse
Affiliation(s)
- J E Kim
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
16
|
DeLange F, Bovee-Geurts PH, VanOostrum J, Portier MD, Verdegem PJ, Lugtenburg J, DeGrip WJ. An additional methyl group at the 10-position of retinal dramatically slows down the kinetics of the rhodopsin photocascade. Biochemistry 1998; 37:1411-20. [PMID: 9477970 DOI: 10.1021/bi972397y] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study focuses on ligand-protein interactions in a rhodopsin analogue generated from bovine opsin and the 10-methyl homologue of 11-cis-retinal. The analogue pigment displays a reduced alpha-band at 506 +/- 2 and a stronger beta-band at 325 nm. Remarkably, the rotational strength of these bands observed in visible circular dichroism spectra was found to be similar for both native and 10-methyl rhodopsin. The quantum yield of the analogue pigment was determined to be 0.55. All photointermediates were analyzed by Fourier transform infrared difference spectroscopy. At the batho stage, strong hydrogen-out-of-plane vibrations were observed, indicating that the 10-methyl chromophore also adopts a distorted all-trans conformation at this stage. In contrast to native rhodopsin, the batho intermediate of the 10-methyl pigment is stable up to 180 K and only slowly decays to the next intermediate between 180 and 210 K. As in native rhodopsin, the 10-methyl metarhodopsin I intermediate is generated at about 220 K, but its transition to the metarhodopsin II state is again shifted to a much higher temperature (> 293 K) than for the native pigment (> 260 K). Infrared analysis, nevertheless, shows that the conformational changes in the photointermediates of the 10-methyl pigment are basically identical with those observed in the native pigment. This is supported by a signal function assay, showing that the analogue pigment is able to activate transducin. The dual effect of the 10-methyl group on the photocascade is attributed to steric interactions which, initially, hamper the relaxation of strain in the polyene chain of the chromophore and, eventually, interfere with the conformational rearrangements of the protein moiety required to adopt the active conformation of the receptor. Our data provide direct support for the concept that the relaxation of strain in the retinal polyene chain acts as the major driving force of the photocascade dark reaction.
Collapse
Affiliation(s)
- F DeLange
- Department of Biochemistry FMW-160, University of Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Koch D, Gärtner W. Steric hindrance between chromophore substituents as the driving force of rhodopsin photoisomerization: 10-methyl-13-demethyl retinal containing rhodopsin. Photochem Photobiol 1997; 65:181-6. [PMID: 9066300 DOI: 10.1111/j.1751-1097.1997.tb01896.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A visual chromophore analogue, 10-methyl-13-demethyl (dm) retinal, was synthesized and reconstituted with bleached bovine rhodopsin to form a visual pigment derivative with absorbance maximum at 505 nm. The investigations with this new compound were stimulated from recent results using 13-dm retinal as a chromophore that revealed a remarkable loss in quantum efficiency (phi of 13-dm retinal-containing rhodopsin: 0.30, Ternieden and Gärtner, J. Photochem. Photobiol. B Biol, 33, 83-86, 1996). The quantum efficiency of the new pigment was determined as 0.59 by quantitative bleaching using reconstituted rhodopsin as a reference. The very similar quantum efficiencies of rhodopsin and the new pigment give experimental support for the recently presented hypothesis that a steric hindrance between the substituents at positions 10 and 13 in 11-cis-retinal is elevated during the photoisomerization and thus facilitates the rapid photoisomerization of the visual chromophore (Peteanu et al., Proc. Natl. Acad. Sci. USA 90, 11762-11766, 1993). Such steric hindrance is removed from the molecule by the elimination of the methyl group from position 13 and can be re-established via a rearrangement of the substitution pattern by introducing a methyl group at position 10 of 13-dm retinal.
Collapse
Affiliation(s)
- D Koch
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
18
|
Birge RR. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1016:293-327. [PMID: 2184895 DOI: 10.1016/0005-2728(90)90163-x] [Citation(s) in RCA: 302] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R R Birge
- Department of Chemistry, Syracuse University, NY 13244
| |
Collapse
|
19
|
|
20
|
Crescitelli F, Liu RS. The spectral properties and photosensitivities of analogue photopigments regenerated with 10- and 14-substituted retinal analogues. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B, BIOLOGICAL SCIENCES 1988; 233:55-76. [PMID: 2895933 DOI: 10.1098/rspb.1988.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Analogues of 11-cis- and 9-cis-retinal with substitutions at positions 10 and 14 were used to regenerate analogue photopigments with two opsins: that of the transmuted (cone-like) 521-pigment of Gekko gekko and that of the rhodopsin of Porichthys notatus. The spectral absorbances and photosensitivities of the regenerated photopigments were determined and compared, first, between the two systems of analogue photopigments, and second, in the responses to the two opsins. Unlike the 10-fluoropigments, the comparable 14-compounds were significantly red-shifted by 19-30 nm and their sensitivity to light was similar to that of the parent 11-cis- and 9-cis-pigments. These were the results for both analogue pigments. In contrast, the 10-pigments were spectrally located close to the wavelengths of the parent compounds and the photosensitivity was significantly reduced, especially in the case of the 9-cis-analogues. Evidence was obtained for a steric hindrance effect at position 14, for no regeneration was obtained when methyl or ethyl groups were at this carbon. In the 10-substituted retinals, steric hindrance was noted only for the gecko; only the fluorosubstituted, but not the chloro-, the methyl- or the ethyl-substituted, retinals reacted. With the fish opsin, pigments were regenerated with all but the ethyl-substituted retinal. The gecko opsin appears to have a more restricted binding site. Another feature of the gecko was related to the chloride bathochromic and hyperchromic effects, in which the 521-pigment prepared in a chloride-deficient state has a blue-shifted spectrum compared with the spectrum obtained after the addition of chloride, and its extinction is raised by the addition of chloride to give a mean ratio of 1.23 for the two extinctions, one with, the other without, added chloride. The 11-cis-10-F-analogue pigment gave both chloride effects and the hyperchromic ratio was the same as that recorded for the native visual pigment. In contrast, the pigment formed with 11-cis-14-F-retinal gave a hyperchromic ratio significantly greater than 1.23. A similar contrast in the responses to chloride was obtained with the analogue photopigments regenerated with the 9-cis-10-F- and 9-cis-14-F-chromophores. This difference between the two systems is interpreted as the result of a specific configurational feature of the gecko opsin when in the chloride-deficient state that is relevant to the binding of the retinal analogue.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F Crescitelli
- Department of Biology, University of California, Los Angeles 90024
| | | |
Collapse
|
21
|
Saari JC, Bredberg DL. Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47610-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
McFall-Ngai M, Crescitelli F, Childress J, Horwitz J. Patterns of pigmentation in the eye lens of the deep-sea hatchetfish, Argyropelecus affinis Garman. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1986; 159:791-800. [PMID: 3806437 DOI: 10.1007/bf00603732] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study is a morphological, biochemical and spectrophotometric characterization of the eye lens pigmentation in 45 specimens (11-88 mm in standard length) of the deep-sea hatchetfish, Argyropelecus affinis (Stomiiformes: Sternoptychidae). For comparison, we also examined available lenses of other members of the family Sternoptychidae, including three other species of the genus Argyropelecus, and two species of the genus Sternoptyx. Lens pigmentation was observed in all specimens of Argyropelecus spp. larger than about 36 mm in standard length, but was absent in all Argyropelecus spp. individuals less than 36 mm. However, lens pigmentation was not observed in Sternoptyx specimens of any size. Detailed studies of A. affinis indicated that at 36 mm the nascent lens fiber cells, which are continually laid down over preexisting, unpigmented cells, begin incorporating pigment, and the pigment concentration increases steadily as pigmented cells are added during lens growth. Spectrophotometric and biochemical data suggested that the pigment is a carotenoprotein complex, the carotenoid-like chromophore being strongly associated with a specific soluble lens protein, alpha crystallin. While the lens coloration in these fishes is age-related, analyses of the retinal visual pigment revealed no concomitant age-related change in the peak wavelength of retinal sensitivity in these fishes. Our data on the spectral absorbance of the lens and visual pigment of these fishes suggest that the lens pigmentation acts as a short-wave filter to improve acuity of the visual system.
Collapse
|
23
|
Liu RS, Crescitelli F, Denny M, Matsumoto H, Asato AE. Photosensitivity of 10-substituted visual pigment analogues: detection of a specific secondary opsin-retinal interaction. Biochemistry 1986; 25:7026-30. [PMID: 2948555 DOI: 10.1021/bi00370a040] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The photosensitivities of the bovine rhodopsin and gecko pigment 521 analogues regenerated from C-10-substituted analogues of 11-cis- and 9-cis-retinals were determined by two different methods. A similar reactivity trend was noted for both pigment systems as revealed in the photosensitivity of the gecko pigments and relative quantum yields of the bovine analogues. The 10-fluoro-11-cis photopigments had a photosensitivity less than, but approaching, that of the native (11-cis) visual pigment while the 10-fluoro-9-cis photopigments had a much lower photosensitivity than the parent 9-cis regenerated pigment. The results are interpreted in terms of recently described models of rhodopsin architecture and of the primary molecular reaction of visual pigments to light. The unusually low photoreactivity of the 10-fluoro-9-cis pigment molecule is viewed as the result of a regiospecific hydrogen-bonding interaction of the electronegative fluorine atom to the opsin.
Collapse
|
24
|
Crescitelli F, McFall-Ngai M, Horwitz J. The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1985; 157:323-33. [PMID: 3837092 DOI: 10.1007/bf00618122] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Visual pigments were extracted from the retinas of 8 species of marine teleosts and 4 species of elasmobranchs and a comparison was made of the pigment properties from these fishes, some inhabiting surface waters, others from the mesopelagic zone, and a few migrating vertically between these two environments. An association was found between the spectral position of the absorbance curve and the habitat depth or habitat behavior, with the blue-shifted chrysopsins being the pigments of the twilight zone fishes and the rhodopsins with fishes living near the surface. The retina of the swell shark (Cephaloscyllium ventriosum) yielded extracts with two photopigments; one, a rhodopsin at 498 nm; the second, a chrysopsin at 478 nm. This fish has been reported to practice seasonal vertical migrations between the surface and the mesopelagic waters. In addition to the spectral absorbance, several properties of these visual pigments were examined, including the meta-III product of photic bleaching, regeneration with added 11-cis and 9-cis retinals, and the chromophoric photosensitivity. The chrysopsin properties were found to be fundamentally similar to those of typical vertebrate rhodopsins. Correlating the spectral data with the habitat and habitat behavior of our fishes gives us confidence in the idea that the scotopic pigments have evolved as adaptations to those aspects of their color environment that are critical to the survival of the species.
Collapse
|
25
|
Boucher F, Leblanc RM. Energy storage in the primary photoreaction of bovine rhodopsin. A photoacoustic study. Photochem Photobiol 1985; 41:459-65. [PMID: 4011702 DOI: 10.1111/j.1751-1097.1985.tb03512.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Crescitelli F, Liu RS. The gecko opsin: responses to geometric isomers of retinal and 3-dehydroretinal. Photochem Photobiol 1985; 41:309-16. [PMID: 3160052 DOI: 10.1111/j.1751-1097.1985.tb03490.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
De Valois RL, Jacobs GH. Neural Mechanisms of Color Vision. Compr Physiol 1984. [DOI: 10.1002/cphy.cp010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Crescitelli F, Karvaly B. The gecko visual pigment: its photosensitivity and the effects of chloride and nitrate ions. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON. SERIES B, BIOLOGICAL SCIENCES 1983; 220:69-87. [PMID: 6140683 DOI: 10.1098/rspb.1983.0089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
By use of the method of photometric curves, the photosensitivity of the major and ion-sensitive pigment of Gekko gekko has been determined and compared with that of rhodopsins of the frog (Rana pipiens) and of the fish (Porichthys notatus). In the presence of Cl- (or Br-), the gecko pigment has the same photosensitivity as the other A1 rod pigments, but unlike these, the addition of NH2OH does not lead to a Dartnall effect, i.e. an enhancement in the measured rate of photic bleaching. This is because the gecko pigment has no meta-III intermediate. In the Cl- -deficient state the gecko pigment has a photosensitivity 0.8 times that of the Cl- -provided system. The increase in photosensitivity brought on by Cl- is quantitatively accounted for by the Cl- -induced hyperchromic effect. The addition of NH2OH to the system without added Cl- leads to a small increase in measured rate of photic bleaching with an apparent 13% increment in photosensitivity. This is not a classical Dartnall effect for here again no meta-III is involved. The possibility is raised of an additional, yet undiscovered, action of NH2OH on the opsin moiety. Nitrate ions (NO3-) are known to produce an increase in extinction coefficient similar to that of Cl- and a hypochromic shift in the spectral absorbance. Despite the hyperchromic action, NO3- produces a reduction in the measured rate of photic bleaching, an effect explained by the appearance of a meta-III type intermediate absorbing at about 470 nm. While Cl- is able to antagonize the NO3- -induced hypochromic shift, it is unable to reverse the NO3- -induction of meta-III. This, along with other differences in responses of the gecko pigment to these two ions, suggests that Cl- and NO3- act at two different sites and produce unique conformational changes in the protein molecule.
Collapse
|
29
|
Cronin TW, Goldsmith TH. Quantum efficiency and photosensitivity of the rhodopsin equilibrium metarhodopsin conversion in crayfish photoreceptors. Photochem Photobiol 1982; 36:447-54. [PMID: 7146115 DOI: 10.1111/j.1751-1097.1982.tb04401.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
|
31
|
|
32
|
Harosi FI. Microspectrophotometry and Optical Phenomena: Birefringence, Dichroism, and Anomalous Dispersion. ACTA ACUST UNITED AC 1981. [DOI: 10.1007/978-3-540-38507-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
33
|
Hurley JB, Ebrey TG, Honig B, Ottolenghi M. Temperature and wavelength effects on the photochemistry of rhodopsin, isorhodopsin, bacteriorhodopsin and their photoproducts. Nature 1977; 270:540-2. [PMID: 593379 DOI: 10.1038/270540a0] [Citation(s) in RCA: 171] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Rosenkranz J. New aspects of the ultrastructure of frog rod outer segments. INTERNATIONAL REVIEW OF CYTOLOGY 1977; 50:25-158. [PMID: 332656 DOI: 10.1016/s0074-7696(08)60098-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Abstract
The description of the molecular processes which underlie visual excitation is the fundamental problem in understanding vision at the level of a single photoreceptor. Thus far only a general outline of photoreceptor function has emerged with little known about actual biochemical and biophysical mechanisms.
Collapse
|
36
|
|