1
|
Virus-Host Interaction Gets Curiouser and Curiouser. PART II: Functional Transcriptomics of the E. coli DksA-Deficient Cell upon Phage P1 vir Infection. Int J Mol Sci 2021; 22:ijms22116159. [PMID: 34200430 PMCID: PMC8201110 DOI: 10.3390/ijms22116159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The virus–host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA− hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.
Collapse
|
2
|
Cech GM, Kloska A, Krause K, Potrykus K, Cashel M, Szalewska-Pałasz A. Virus-Host Interaction Gets Curiouser and Curiouser. PART I: Phage P1 vir Enhanced Development in an E. coli DksA-Deficient Cell. Int J Mol Sci 2021; 22:ijms22115890. [PMID: 34072628 PMCID: PMC8198154 DOI: 10.3390/ijms22115890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteriophage P1 is among the best described bacterial viruses used in molecular biology. Here, we report that deficiency in the host cell DksA protein, an E. coli global transcription regulator, improves P1 lytic development. Using genetic and microbiological approaches, we investigated several aspects of P1vir biology in an attempt to understand the basis of this phenomenon. We found several minor improvements in phage development in the dksA mutant host, including more efficient adsorption to bacterial cell and phage DNA replication. In addition, gene expression of the main repressor of lysogeny C1, the late promoter activator Lpa, and lysozyme are downregulated in the dksA mutant. We also found nucleotide substitutions located in the phage immunity region immI, which may be responsible for permanent virulence of phage P1vir. We suggest that downregulation of C1 may lead to a less effective repression of lysogeny maintaining genes and that P1vir may be balancing between lysis and lysogeny, although finally it is able to enter the lytic pathway only. The mentioned improvements, such as more efficient replication and more “gentle” cell lysis, while considered minor individually, together may account for the phenomenon of a more efficient P1 phage development in a DksA-deficient host.
Collapse
Affiliation(s)
- Grzegorz M. Cech
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
- Correspondence: ; Tel.: +48-58-523-60-25
| | - Anna Kloska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Klaudyna Krause
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
| | - Michael Cashel
- Intramural Program, Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
| |
Collapse
|
3
|
Zellars M, Squires CL. Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol Microbiol 1999; 32:1296-304. [PMID: 10383769 DOI: 10.1046/j.1365-2958.1999.01442.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ribosomal RNA is transcribed about twice as fast as messenger RNA in vivo, and this increased transcription rate requires the rrn boxA antitermination system. Because several Nus factors have been implicated in rrn antitermination, we have examined the role of NusB, NusE and NusG in controlling the rate of rrn boxA-mediated transcript elongation. In vivo RNA polymerase transcription rates were determined by measuring the rate of appearance of lacZ transcript using a plasmid that contained an inducible T7 promoter fused to the rrn boxA sequence followed by the lacZ gene. This plasmid was introduced into Escherichia coli mutant strains that can be conditionally depleted of NusG, or that carry a deficient nusB gene or a nusE mutation. We found that, in addition to the rrn boxA antiterminator sequence, both NusG and NusB were required to maintain the high transcription rate. The nusE mutation used in this study may be specific for lambda antitermination, as it did not influence the boxA-mediated increase in transcription rate.
Collapse
Affiliation(s)
- M Zellars
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
4
|
Lee JC, Chen HH, Wei HL, Chao YC. Superinfection-induced apoptosis and its correlation with the reduction of viral progeny in cells persistently infected with Hz-1 baculovirus. J Virol 1993; 67:6989-94. [PMID: 8230422 PMCID: PMC238158 DOI: 10.1128/jvi.67.12.6989-6994.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Differential induction of necrosis or apoptosis was found upon challenge of cells of the insect Spodoptera frugiperda productively or persistently infected with Hz-1 baculovirus, respectively. Unlike parental SF9 cells, which were essentially all killed by virally induced necrosis, persistently infected cells underwent a process of massive cell death by apoptosis; cells which were not killed by apoptosis then reestablished a cell monolayer. Upon viral challenge, the yield of viral progeny was reduced greatly in persistently virus-infected cells but not in parental cells. Immunolabelling of individual cells revealed that upon viral challenge, production of viral progeny was detectable only in necrotic cells and not in apoptotic cells. These results indicated that induction of apoptosis greatly reduces the yield of viral progeny in cells persistently infected with Hz-1 baculovirus. This is the first report of apoptosis induction in persistently infected cells upon viral superinfection.
Collapse
Affiliation(s)
- J C Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
5
|
Riedel HD, Heinrich J, Schuster H. Cloning, expression, and characterization of the icd gene in the immI operon of bacteriophage P1. J Bacteriol 1993; 175:2833-8. [PMID: 8491703 PMCID: PMC204598 DOI: 10.1128/jb.175.10.2833-2838.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The immI operon of P1 contains the genes c4, icd (formerly called orfx), and ant which are constitutively transcribed in that order from a single promoter, P51b. C4 is an antisense RNA which is processed from the precursor transcript. C4 RNA acts as a translational repressor of icd, thereby also inhibiting antirepressor (ant) synthesis. We have cloned the icd and the overlapping icd and ant genes. We show, by means of plasmid deletion analysis, that icd is translationally coupled to ant. An internal in-frame deletion of icd making up 65% of the codons still allows antirepressor synthesis at a reduced rate, indicating that a functionally active icd gene product is dispensable for ant expression. We identify the product of the icd gene as a 7.3-kDa protein which interferes with cell division. The results suggest that constitutive expression of icd, in the absence of a functionally active antirepressor, prevents P1 lysogen formation because of its detrimental effect on the host cell.
Collapse
Affiliation(s)
- H D Riedel
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
6
|
The Bof protein of bacteriophage P1 exerts its modulating function by formation of a ternary complex with operator DNA and C1 repressor. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49820-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Heinzel T, Velleman M, Schuster H. C1 repressor of phage P1 is inactivated by noncovalent binding of P1 Coi protein. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50646-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
8
|
Lehnherr H, Guidolin A, Arber W. Bacteriophage P1 gene 10 encodes a trans-activating factor required for late gene expression. J Bacteriol 1991; 173:6438-45. [PMID: 1917870 PMCID: PMC208978 DOI: 10.1128/jb.173.20.6438-6445.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Amber mutants of bacteriophage P1 were used to identify functions involved in late regulation of the P1 lytic growth cycle. A single function has been genetically identified to be involved in activation of the phage-specific late promoter sequence Ps. In vivo, P1 gene 10 amber mutants fail to trans activate a lacZ operon fusion under the transcriptional control of promoter Ps. Several P1 segments, mapping around position 95 on the P1 chromosome, were cloned into multicopy plasmid vectors. Some of the cloned DNA segments had a deleterious effect on host cells unless they were propagated in a P1 lysogenic background. By deletion and sequence analysis, the harmful effect could be delimited to a 869-bp P1 fragment, containing a 453-bp open reading frame. This open reading frame was shown to be gene 10 by sequencing the amber mutation am10.1 and by marker rescue experiments with a number of other gene 10 amber mutants. Gene 10 codes for an 18.1-kDa protein showing an unusually high density of charged amino acid residues. No significant homology to sequences present in the EMBL/GenBank data base was found, and the protein contained none of the currently known DNA-binding motifs. An in vivo trans activation assay system, consisting of gene 10 under the transcriptional control of an inducible promoter and a gene S/lacZ fusion transcribed from Ps, was used to show that gene 10 is the only phage-encoded function required for late promoter activation.
Collapse
Affiliation(s)
- H Lehnherr
- Department of Microbiology, University of Basel, Switzerland
| | | | | |
Collapse
|
9
|
Hemschemeier S, Grund M, Keuntje B, Eichenlaub R. Isolation of Escherichia coli mutants defective in uptake of molybdate. J Bacteriol 1991; 173:6499-506. [PMID: 1655715 PMCID: PMC208986 DOI: 10.1128/jb.173.20.6499-6506.1991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
For the study of molybdenum uptake by Escherichia coli, we generated Tn5lac transposition mutants, which were screened for the pleiotropic loss of molybdoenzyme activities. Three mutants A1, A4, and M22 were finally selected for further analysis. Even in the presence of 100 microM molybdate in the growth medium, no active nitrate reductase, formate dehydrogenase, and trimethylamine-N-oxide reductase were detected in these mutants, indicating that the intracellular supply of molybdenum was not sufficient. This was also supported by the observation that introduction of plasmid pWK225 carrying the complete nif regulon of Klebsiella pneumoniae did not lead to a functional expression of nitrogenase. Finally, molybdenum determination by induced coupled plasma mass spectroscopy confirmed a significant reduction of cell-bound molybdenum in the mutants compared with that in wild-type E. coli, even at high molybdate concentrations in the medium. A genomic library established with the plasmid mini-F-derived cop(ts) vector pJE258 allowed the isolation of cosmid pBK229 complementing the molybdate uptake deficiency of the chlD mutant and the Tn5lac-induced mutants. Certain subfragments of pBK229 which do not contain the chlD gene are still able to complement the Tn5lac mutants. Mapping experiments showed that the Tn5lac insertions did not occur within the chromosomal region present in pBK229 but did occur very close to that region. We assume that the Tn5lac insertions have a polar effect, thus preventing the expression of transport genes, or that a positively acting regulatory element was inactivated.
Collapse
Affiliation(s)
- S Hemschemeier
- Gentechnologie/Mikrobiologie, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | | | |
Collapse
|
10
|
Baumstark BR, Stovall SR, Bralley P. The ImmC region of phage P1 codes for a gene whose product promotes lytic growth. Virology 1990; 179:217-27. [PMID: 2120849 DOI: 10.1016/0042-6822(90)90291-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ImmC region of the temperate bacteriophage P1 contains c1, a gene that codes for a repressor of lytic growth. Located in the region upstream of c1 are four open reading frames capable of coding for low-molecular-weight proteins. The efficiency of lysogeny by P1+Cm was found to be reduced by almost 10(5)-fold when the host cells carry this region of ImmC on a multicopy plasmid. The sequences responsible for interfering with lysogen formation were localized to one of the small open reading frames (orf4) within ImmC. Insertions and deletions within orf4 suppress the virulent phenotype of P1virC mutants when introduced into the phage by recombination. These virC-suppressed mutant phage were found to be incapable of lytic growth unless the product of orf4 is provided in trans. The presence of orf4 was observed to interfere with repression by the c1 protein of ImmC-encoded promoters fused to lacZ. For this reason, we suggest that orf4 corresponds to coi, a gene previously proposed to code for an inactivator of c1-mediated repression.
Collapse
Affiliation(s)
- B R Baumstark
- Department of Biology, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
11
|
Velleman M, Heirich M, Günther A, Schuster H. A bacteriophage P1-encoded modulator protein affects the P1 c1 repression system. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44781-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Heinzel T, Velleman M, Schuster H. The c1 repressor inactivator protein coi of bacteriophage P1. Cloning and expression of coi and its interference with c1 repressor function. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)38252-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Schaefer TS, Hays JB. The bof gene of bacteriophage P1: DNA sequence and evidence for roles in regulation of phage c1 and ref genes. J Bacteriol 1990; 172:3269-77. [PMID: 2345146 PMCID: PMC209135 DOI: 10.1128/jb.172.6.3269-3277.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The C1 repressor of bacteriophage P1 acts via 14 or more distinct operators. This repressor represses its own synthesis as well as the synthesis of other gene products. Previously, mutation of an auxiliary regulatory gene, bof, has been shown to increase expression of some C1-regulated P1 genes (e.g., ref) but to decrease expression of others (e.g., ban). In this study the bof gene was isolated on the basis of its ability to depress stimulation of Escherichia coli chromosomal recombination by the P1 ref gene, if and only if a source of C1 was present. C1 alone, but not Bof alone, was partially effective. The bofDNA sequence encodes an 82-codon reading frame that begins with a TTG codon and includes the sites of the bof-1(Am) mutation and a bof::Tn5 null mutation. Expression of ref::lacZ and cl::lacZ fusion genes was partially repressed in trans by a P1 bof-1 prophage or by plasmid-encoded C1 alone, which was in agreement with effects on Ref-stimulated recombination and with previous indirect evidence for c1 autoregulation. Repression of both fusion genes by plasmid-encoded C1 plus Bof or by a P1 bof+ prophage was more complete. When the C1 source also included a 0.7-kilobase region upstream from C1 which encodes the coi gene, repression of both c1::lacZ and ref::lacZ by C1 alone or by C1 plus Bof was much less effective, as if Coi interfered with C1 repressor function.
Collapse
Affiliation(s)
- T S Schaefer
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331
| | | |
Collapse
|
14
|
Gutmann L, Agarwal M, Arthur M, Campanelli C, Goldstein R. A phasmid shuttle vector for the cloning of complex operons in Salmonella. Plasmid 1990; 23:42-58. [PMID: 2190245 DOI: 10.1016/0147-619x(90)90043-c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phasmid (phage plasmid hybrid) P4 vir1 can be propagated in Escherichia coli as a helper-dependent lytic phage, as a plasmid, or as a prophage. On the basis of an understanding of these modes of propagation, derivatives of P4 have been constructed for use as cloning vectors. In this report we demonstrate that phasmid P4 (i) will propagate as a helper-dependent lytic phage and as a plasmid in Salmonella spp. and (ii) can be used as a high efficiency phage shuttle vector for the reversible transfer of cloned genes between Salmonella spp. and E. coli. For both E. coli and Salmonella spp., P4 phage-mediated gene transfer proved to be only 10-fold lower than plaquing efficiency. For the case of Salmonella spp., this frequency is ca. 10(4)-fold more efficient than is typically found for the transformation of DNA molecules. The usefulness of this cloning vector system for analyses of pathogenic virulence factors is demonstrated by the cloning and expression of both the P pilus adhesin operon and the hemolysin operon of uropathogenic E. coli.
Collapse
Affiliation(s)
- L Gutmann
- Maxwell Finland Laboratory For Infectious Diseases, Boston University, School of Medicine, Massachusetts 02118
| | | | | | | | | |
Collapse
|
15
|
Heisig A, Riedel HD, Dobrinski B, Lurz R, Schuster H. Organization of the immunity region immI of bacteriophage P1 and synthesis of the P1 antirepressor. J Mol Biol 1989; 209:525-38. [PMID: 2585500 DOI: 10.1016/0022-2836(89)90591-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immI region of bacteriophage P1 includes the ant/reb gene, which encodes the antirepressor protein, and the c4 gene, which encodes a repressor molecule that negatively regulates antirepressor synthesis. The antirepressor interferes with the activity of the P1 repressor of lytic function, the product of the c1 gene. We have determined the DNA sequences of the immI region of P1 wild-type and the mutants virs, ant16, ant17, and reb22. Using suitable P1 immI DNA subfragments cloned into a vector of the T7 bacteriophage RNA polymerase expression system the antirepressor protein(s) was overproduced. On the basis of positions of immI mutations and the sizes of ant gene products, the following organizational feature of the P1 immI region is suggested: (1) the genes c4 and ant are cotranscribed in that order from the same promoter in the clockwise direction of the P1 genetic map; (2) an open reading frame for an unknown gene is located in between c4 and ant; (3) the site at which the c4 repressor acts is located within the c4 structural gene; (4) two antirepressor proteins of molecular weights 42,000 and 32,000 are encoded by a single open reading frame, with the smaller protein initiating at an in-frame start codon; (5) transcription of immI is regulated via a c1-controlled operator, Op51, indicating a communication between the immunity systems immC and immI.
Collapse
Affiliation(s)
- A Heisig
- Max-Planck-Institut für Molekulare Genetik, Berlin, FRG
| | | | | | | | | |
Collapse
|
16
|
Abstract
The c1 genes of the heteroimmune phages P1 and P7 were sequenced and their products were compared. P7c1 expression was correlated with the translation in vitro of a protein whose predicted molecular weight (33,000 daltons) is indistinguishable from that of the P1c1 repressor. The c1 regions from both P1 and P7 were found to contain open reading frames capable of coding for a 283-amino acid protein whose predicted secondary structure lacks the helix-turn-helix motif commonly associated with repressor proteins. Two P1c1 amber mutations were localized to the 283-amino acid open reading frame. The P1c1 and P7c1 sequences were found to differ at only 18 positions, all but two of which alter the third position of the affected codon and do not alter the amino acid sequence of the protein. Plasmids expressing the c1 gene from either phage cause the repression of transcription from a cloned promoter situated upstream of P1c1.
Collapse
Affiliation(s)
- F A Osborne
- Department of Biology, Georgia State University, Atlanta 30303
| | | | | |
Collapse
|
17
|
Guidolin A, Zingg JM, Lehnherr H, Arber W. Bacteriophage P1 tail-fibre and dar operons are expressed from homologous phage-specific late promoter sequences. J Mol Biol 1989; 208:615-22. [PMID: 2810357 DOI: 10.1016/0022-2836(89)90152-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two plasmid systems, containing the easily assayable galK and lacZ functions, were employed to study the regulation of the bacteriophage P1 tail-fibre and dar operons. Various P1 DNA fragments carrying either the 5' end of lydA (the 1st gene in the dar operon) or the tail-fibre gene 19 precede the promoterless coding region of galK or were fused, in-frame, to the lacZ gene. In the presence of an induced P1 prophage, GalK and LacZ activities were both detected after a 20 to 30 minute lag period, indicating that the dar and tail-fibre operons are expressed from positively regulated, late promoters. The corresponding DNA operons are expressed from positively regulated, late promoters. The corresponding DNA region of the closely related p15B plasmid exhibits comparable promoter properties. Deletion analysis mapped the promoter of a gene 19-lacZ fusion to a DNA region upstream from gene R, an open reading frame that precedes the coding frame of gene 19. The tail-fibre gene thus forms the second gene in a three gene operon (genes R, 19 (S) and U). Sequence comparison between this promoter region, upstream sequences of the lydA gene and the corresponding portions of the p15B genome allowed the identification of a highly conserved 38 base-pair sequence, which most likely represents a P1-specific late promoter. This was confirmed by 5' mapping of P1 mRNA. Transcription of both the tail-fibre and dar operons is initiated at sites five and six base-pairs, respectively, downstream from the first conserved nucleotide of this sequence. The conserved motif consists of a standard Escherichia coli -10 region followed by a nine base-pair palindromic sequence located centrally about position -22.
Collapse
Affiliation(s)
- A Guidolin
- Department of Microbiology, Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
18
|
Kliem M, Dreiseikelmann B. The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion. Virology 1989; 171:350-5. [PMID: 2763457 DOI: 10.1016/0042-6822(89)90602-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous work has shown that the sim gene of bacteriophage P1, if cloned into a multicopy vector, confers immunity against P1 infection to cells. We show that a 1.85-kb DNA fragment from the sim region of P1 (in the multicopy plasmid pMK4) expresses immunity and encodes three proteins with molecular weights of about 25, 24, and 15 kDa. Deletion of 650 bp from the sim region abolished synthesis of all three proteins and of the sim phenotype. Expression of sim did not prevent adsorption of P1 to cells. Successful transfection with linear P1 DNA suggests that the recombinational circularization of P1 DNA is not inhibited in the presence of sim. Plasmid pMK4 and a P1 prophage can be stably maintained in the cell indicating that replication of the prophage is not disturbed by sim. The prophage can be induced in the presence of sim. This shows that the sim phenotype is not caused by preventing lytic replication or phage maturation. In cells with pMK4 there is no expression of genes from infecting phages and transduction frequency is drastically reduced. We suggest that sim functions as a superinfection exclusion system by preventing transfer of DNA from the adsorbed phages into the cytoplasm.
Collapse
Affiliation(s)
- M Kliem
- Universität Bielefeld, Fakultät für Biologie, Lehrstuhl für Gentechnologie/Mikrobiologie, Federal Republic of Germany
| | | |
Collapse
|
19
|
Heinzel T, Velleman M, Schuster H. ban operon of bacteriophage P1. Mutational analysis of the c1 repressor-controlled operator. J Mol Biol 1989; 205:127-35. [PMID: 2647997 DOI: 10.1016/0022-2836(89)90370-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The repressor of bacteriophage P1, encoded by the c1 gene, represses the phage lytic functions and is responsible for maintaining the P1 prophage in the lysogenic state. The c1 repressor interacts with at least 11 binding sites or operators widely scattered over the P1 genome. From these operators, a 17 base-pair asymmetric consensus sequence, ATTGCTCTAATAAATTT, was derived. Here, we show that the operator, Op72 of the P1ban operon consists of two overlapping 17 base-pair sequences a and b forming an incomplete palindrome. Op72a matches the consensus sequence, whereas Op72b contains two mismatches. The evidence is based on the sequence analysis of 27 operator mutants constitutive for ban expression. They were identified as single-base substitutions at positions 2 to 10 of Op72a (26 mutants) and at position 8 of Op72b (one mutant). We conclude from gel retardation and footprinting studies that two repressor molecules bind to the operator and that positions 4, 5 and 7 to 10 of the operator play an essential role in repressor recognition.
Collapse
Affiliation(s)
- T Heinzel
- Max-Planck-Institut für Molekulare Genetik, Berlin, F.R.G
| | | | | |
Collapse
|
20
|
Eliason JL, Sternberg N. Characterization of the binding sites of c1 repressor of bacteriophage P1. Evidence for multiple asymmetric sites. J Mol Biol 1987; 198:281-93. [PMID: 3430609 DOI: 10.1016/0022-2836(87)90313-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The repressor of bacteriophage P1, encoded by the c1 gene, is responsible for maintaining a P1 prophage in the lysogenic state. In this paper we present: (1) the sequence of the rightmost 943 base-pairs of the P1 genetic map that includes the 5'-terminal 224 base-pairs of the c1 gene plus its upstream region; (2) the construction of a plasmid that directs the production of approximately 5% of the cell's protein as P1 repressor; (3) a deletion analysis that establishes the startpoint of P1 repressor translation; (4) filter binding experiments that demonstrate that P1 repressor binds to several regions upstream from the c1 gene; (5) DNase I footprint experiments that directly identify two of the P1 repressor binding sites. Sequences very similar to the identified binding sites occur in at least 11 sites in P1, in most cases near functions known, or likely, to be controlled by repressor. From these sites we have derived the consensus binding site sequence ATTGCTCTAATAAATTT. We suggest that, unlike other phage operators, the P1 repressor binding sites lack rotational symmetry.
Collapse
Affiliation(s)
- J L Eliason
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Inc., Wilmington, DE 19898
| | | |
Collapse
|
21
|
Abstract
The c4 gene of phage P1 has been localized to 335 bp of the P1EcoRI-9 fragment, within 50 bp of the EcoRI-9/14 junction. DNA sequence analysis of this fragment reveals a single open reading frame of 66 amino acids. The location of two c4 mutations, both of which produce changes in the predicted amino acid sequence in this reading frame, suggests that the reading frame codes for the c4 repressor. A region with high homology to the E. coli promoter consensus sequence is located approximately 50 bp upstream from the reading frame. Deletion of this potential promoter region abolishes expression of c4, as indicated by the loss of complementation of c4 mutants for lysogeny. Complementation is restored by the introduction of a heterologous promoter (the T7 phi 10 promoter), indicating that c4 expression is absolutely dependent on transcription of the 66-amino acid reading frame.
Collapse
|
22
|
Baumstark BR, Stovall SR, Ashkar S. Interaction of the P1c1 repressor with P1 DNA: localization of repressor binding sites near the c1 gene. Virology 1987; 156:404-13. [PMID: 3811241 DOI: 10.1016/0042-6822(87)90420-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The c1 repressor of phage P1 was previously shown (B.R. Baumstark and J.R. Scott, 1980, J. Mol. Biol. 140, 471-480) to bind specifically to P1BamHI-9, a 1.4-kb fragment that is closely linked to the c1 structural gene and spans the ends of the P1 genetic map. The position of the repressor binding site(s) relative to the ends of the genetic map and the c1 gene was investigated by testing cloned fragments of EcoRI-7 and BamHI-9 for c1 expression and repressor binding. Although sequences in both BamHI-9 and the adjacent 2.7-kb EcoRI/BamHI fragment were found to be required for the production of the c1 protein, c1 expression could be restored to the 2.7-kb fragment by the addition of a heterologous promoter (ptac). These observations are consistent with the localization of the c1 reading frame to the 2.7-kb fragment and at least part of the c1 promoter region to BamHI-9. The c1 repressor was shown to bind in vitro to two distinct cloned fragments of BamHI-9 derived from the far right side of the P1 map, indicating the presence of at least two recognition sites in this region. DNA sequence analysis revealed that these two fragments share a 23-bp region of homology. A synthetic DNA containing an 11-bp sequence from this region acts as an effective competitor for repressor binding in vitro, suggesting that at least part of the sequence shared by the fragments is involved in repressor-DNA recognition.
Collapse
|
23
|
Meyer J, Stålhammar-Carlemalm M, Streiff M, Iida S, Arber W. Sequence relations among the IncY plasmid p15B, P1, and P7 prophages. Plasmid 1986; 16:81-9. [PMID: 3749335 DOI: 10.1016/0147-619x(86)90066-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electron microscopic analysis of heteroduplex molecules between the 94-kb plasmid p15B and the 92-kb phage P1 genome revealed nine regions of nonhomology, eight substitutions, and two neighboring insertions. Overall, the homologous segments correspond to 83% of the P1 genome and 81% of p15B. Heteroduplex molecules between p15B and the 99-kb phage P7 genome showed nonhomology in eight of the same nine regions; in addition, two new nonhomologous segments are present and P7 carries a 5-kb insertion representing Tn902. The DNA homology between those two genomes amounts to 79% of P7 DNA and 83% of p15B. Plasmid p15B contains two stem-loop structures. One of them has no equivalent structure on P1 and P7 DNA. The other substitutes the invertible C segments of P1 and P7 and their flanking sequences including cin, the gene for the site-specific recombinase mediating inversion.
Collapse
|
24
|
Dhaese P, Dobbelaere MR, Van Montagu M. The temperate B. subtilis phage phi 105 genome contains at least two distinct regions encoding superinfection immunity. MOLECULAR & GENERAL GENETICS : MGG 1985; 200:490-2. [PMID: 2995768 DOI: 10.1007/bf00425736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Two different PstI fragments of temperate phage phi 105 DNA are shown to confer superinfection immunity upon Bacillus subtilis when inserted into the multicopy cloning vector pE194 cop-6. The 2.3 kb PstI fragment I is located almost entirely within EcoRI fragment F and encompasses a region previously known to encode a repressor. The other fragment, PstI-E (4.3 kb) maps inside the EcoRI-B fragment, and allows an explanation of the clear-plaque phenotype of the deletion mutant phi 105DII:6c. The two regions can be distinguished functionally, since only the PstI fragment I product interacts with a specific phi 105 promoter-operator site.
Collapse
|
25
|
Lundqvist B, Bertani G. Immunity repressor of bacteriophage P2. Identification and DNA-binding activity. J Mol Biol 1984; 178:629-51. [PMID: 6492160 DOI: 10.1016/0022-2836(84)90242-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The product of gene C of the temperate bacteriophage P2, the immunity repressor, can be detected as a unique band eluting from phosphocellulose columns at 0.12 M-potassium phosphate when differentially labelled with a radioactive amino acid: the band is absent when phages that either have lost gene C through deletion or carry a suppressor-sensitive mutation in the gene are used. The repressor in its monomeric form is about 11,000 in molecular weight. At near physiological salt concentrations, the form predominantly recovered is the dimer. In filter-binding assays, the partially purified repressor binds wild-type P2 DNA strongly. It does not bind DNA of P2 vir94, a deletion that removes all the genetic elements involved in the regulation of lysogeny; it also does not bind, or binds inefficiently, DNA of P2 vir3, a mutation in the operator that controls the early replicative functions of P2. At the concentrations employed, the dimer is the active form in binding. The P2 repressor clearly differs in several features from the well-studied immunity repressor of bacteriophage lambda.
Collapse
|
26
|
Lagos R, Goldstein R. Phasmid P4: manipulation of plasmid copy number and induction from the integrated state. J Bacteriol 1984; 158:208-15. [PMID: 6370957 PMCID: PMC215400 DOI: 10.1128/jb.158.1.208-215.1984] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
"Phasmid" P4 is unusual in that it is capable of (i) temperate, (ii) lytic, helper-dependent, and (iii) plasmid modes of propagation. In this report we characterize most of the known P4 genetic functions as to their essential or nonessential roles in the stable maintenance of plasmid P4 vir1 (pP4 vir1 (pP4 vir1). We also identify growth conditions that can be used to stably maintain pP4 vir1 at any one of several different copy number levels (n = 1 to 3, n = 10 to 15, or n = 30 to 40). Analyses of a temperature-sensitive alpha derivative of pP4 vir1 show that shifting the temperature from 37 to 42 degrees C allows this mutant to maintain an integrated copy of the plasmid, whereas replication of free copies is repressed because of the nonpermissive condition for their DNA synthesis. Conversely, a shift from 42 to 37 degrees C can be used to reinstate plasmid propagation. The utility of the inducible states of pP4 vir1 is discussed with respect to its attributes as a vector with the potential for cloning inserts of DNA up to 33,000 base pairs in a wide range of bacterial hosts.
Collapse
|
27
|
Devlin BH, Baumstark BR, Scott JR. Superimmunity: characterization of a new gene in the immunity region of P1. Virology 1982; 120:360-75. [PMID: 6285609 DOI: 10.1016/0042-6822(82)90037-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Krüger DH, Reuter M, Hansen S, Schroeder C. Influence of phage T3 and T7 gene functions on a type III(EcoP1) DNA restriction-modification system in vivo. MOLECULAR & GENERAL GENETICS : MGG 1982; 185:457-61. [PMID: 6285143 DOI: 10.1007/bf00334140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The ocr+ gene function (gp 0.3) of bacteriophages T3 and T7 not only counteracts type I (EcoB, EcoK) but also type III restriction endonucleases (EcoP1). Despite the presence of recognition sites, phage DNA as well as simultaneously introduced plasmid DNA are protected by ocr+ expression against both the endonucleolytic and the methylating activities of the EcoP1 enzyme. Nevertheless, the EcoP1 protein causes the exclusion of T3 and T7 in P1-lysogenic cells, apparently by exerting a repressor-like effect on phage gene expression. T3 which induces an S-adenosylmethionine hydrolase is less susceptible to the repressor effect of the SAM-stimulated EcoP1 enzyme. The abundance of EcoP1 recognition sites in the T7 genome is explained by their near identity with the T7 DNA primase recognition site.
Collapse
|
29
|
Schumann W, Bade EG, Lögl C. Three phage-coded functions involved in the expression of bacteriophage Mu immunity. Virology 1982; 117:1-10. [PMID: 6461126 DOI: 10.1016/0042-6822(82)90501-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Goldstein R, Sedivy J, Ljungquist E. Propagation of satellite phage P4 as a plasmid. Proc Natl Acad Sci U S A 1982; 79:515-9. [PMID: 7043461 PMCID: PMC345774 DOI: 10.1073/pnas.79.2.515] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Satellite phage P4 has two known options for propagation. In its lytic cycle, its regulatory functions can act in trans to alter the actions of a helper virus (P2), which then provides necessary gene products, including capsid proteins. P4 also can be propagated in the absence of a helper as a prophage, with distinct sites for integration within the Escherichia coli chromosome. We determined that a single spontaneous mutation (vir1) of phage P4 allows a third mode of propagation: as a plasmid (along with continued integration into the host chromosome). Hence, the P4 regulatory element is capable of (i) temperate; (ii) lytic, helper-dependent; and (iii) plasmid modes of development. These findings emphasize the close relationship between defective viruses and plasmids.
Collapse
|
31
|
|
32
|
|
33
|
Razza JB, Watkins CA, Scott JR. Phage P1 temperature-sensitive mutants with defects in the lytic pathway. Virology 1980; 105:52-9. [PMID: 6998105 DOI: 10.1016/0042-6822(80)90155-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Baumstark BR, Scott JR. The c1 repressor of bacteriophage P1. I. Isolation of the c1 protein and determination of the P1 DNA region to which it binds. J Mol Biol 1980; 140:471-80. [PMID: 7001033 DOI: 10.1016/0022-2836(80)90266-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|