1
|
Makhsous N, Jensen NL, Haman KH, Batts WN, Jerome KR, Winton JR, Greninger AL. Isolation and characterization of the fall Chinook aquareovirus. Virol J 2017; 14:170. [PMID: 28870221 PMCID: PMC5584334 DOI: 10.1186/s12985-017-0839-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/29/2017] [Indexed: 11/10/2022] Open
Abstract
Background Salmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae. Methods The virus was first found in 2014 as part of a routine adult broodstock screening program in which kidney and spleen tissue samples from healthy-appearing, adult fall Chinook salmon (Oncorhynchus tshawytscha) returning to a hatchery in Washington State produced cytopathic effects when inoculated onto a Chinook salmon embryo cell line (CHSE-214). The virus was not able to be confirmed by an RT-PCR assay using existing aquareovirus pan-species primers, and instead was identified by metagenomic next-generation sequencing. Metagenomic next-generation sequencing was used to recover the full genome and completed using 3′ RACE. Results The genome of the fall Chinook aquareovirus contains 11 segments of double-stranded RNA totaling 23.3 kb, with each segment flanked by the canonical sequence termini found in the aquareoviruses. Sequence comparisons and a phylogenetic analysis revealed a nucleotide identity of 63.2% in the VP7 gene with the Green River Chinook virus, placing the new isolate in the species Aquareovirus B. A qRT-PCR assay was developed targeting the VP2, which showed rapid growth of the isolate during the initial 5 days in culture using CHSE-214 cells. Conclusions This sequence represents the first complete genome of an Aquareovirus B species. Future studies will be required to understand the potential pathogenicity and epidemiology of the fall Chinook aquareovirus.
Collapse
Affiliation(s)
- Negar Makhsous
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 320, Seattle, WA, 98102, USA.,Fred Hutchinson Cancer Research Institute, Seattle, WA, USA
| | - Nicole L Jensen
- Washington State Department of Fish and Wildlife, Olympia, WA, USA
| | | | | | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 320, Seattle, WA, 98102, USA.,Fred Hutchinson Cancer Research Institute, Seattle, WA, USA
| | - James R Winton
- USGS Western Fisheries Research Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, 1616 Eastlake Avenue East, Suite 320, Seattle, WA, 98102, USA. .,Fred Hutchinson Cancer Research Institute, Seattle, WA, USA.
| |
Collapse
|
2
|
Lyoo HR, Park SY, Kim JY, Jeong YS. Constant up-regulation of BiP/GRP78 expression prevents virus-induced apoptosis in BHK-21 cells with Japanese encephalitis virus persistent infection. Virol J 2015; 12:32. [PMID: 25888736 PMCID: PMC4352245 DOI: 10.1186/s12985-015-0269-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
Background Persistent infection of the Japanese Encephalitis Virus (JEV) has been reported in clinical cases, experimental animals, and various cell culture systems. We previously reported the establishment of spontaneous JEV persistent infection, assisted by defective interfering particle accumulation and/or attenuated helper viruses, in BHK-21 cells devoid of virus-induced apoptosis, cBS6-2 and cBS6-3. However, cell-specific factors may play important roles in controlling JEV replication and have never been assessed for this specific phenomenon. Recent evidence suggests that viruses have evolved various mechanisms to cope with endoplasmic reticulum stress signaling pathways for their efficient amplification and transmission, including the unfolded protein response (UPR). Results To identify the host cell factors that affect JEV persistence, we investigated the expression of essential UPR factors in cBS6-2 and cBS6-3 cells. Of the selected UPR factors tested, the most noticeable deviations from those of the normal BHK-21 cells with JEV acute infection were as follows: the suppression of C/EBP homologous binding protein (CHOP) and the constant up-regulation of immunoglobulin binding protein (BiP) expression in cBS6-2 and cBS6-3 cells. In JEV acute infection on normal BHK-21 cells, silencing CHOP expression through specific siRNA blocked cell death almost completely. Meanwhile, depletion of BiP by specific siRNA unlocked CHOP expression in cBS6-2 and cBS6-3 cells, resulting in massive cell death. Fulminant apoptotic cell death for both cell clones on tunicamycin treatment revealed that the JEV persistently infected cells still contained functional arms for cell fate decisions. Conclusions BHK-21 cells with JEV persistent infection strive against virus-induced apoptosis through constant up-regulation of BiP expression, resulting in the complete depletion of CHOP even with apparent virus amplification in the cells. Accordingly, the attenuation of virus replication as well as the modifications to cell metabolism could be additional factors contributing to the development of JEV persistent infection in mammalian cells. Electronic supplementary material The online version of this article (doi:10.1186/s12985-015-0269-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hey Rhyoung Lyoo
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| | - Soo Young Park
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| | - Ji Young Kim
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| | - Yong Seok Jeong
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
3
|
Sandekian V, Lim D, Prud'homme P, Lemay G. Transient high level mammalian reovirus replication in a bat epithelial cell line occurs without cytopathic effect. Virus Res 2013; 173:327-35. [PMID: 23352882 DOI: 10.1016/j.virusres.2013.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 02/07/2023]
Abstract
Mammalian reoviruses exhibit a large host range and infected cells are generally killed; however, most studies examined only a few cell types and host species, and are probably not representative of all possible interactions between virus and host cell. Many questions thus remain concerning the nature of cellular factors that affect viral replication and cell death. In the present work, it was observed that replication of the classical mammalian reovirus serotype 3 Dearing in a bat epithelial cell line, Tb1.Lu, does not result in cell lysis and is rapidly reduced to very low levels. Prior uncoating of virions by chymotrypsin treatment, to generate infectious subviral particles, increased the initial level of infection but without any significant effect on further viral replication or cell survival. Infected cells remain resistant to virus reinfection and secrete an antiviral factor, most likely interferon, that is protective against the unrelated encephalomyocarditis virus. Although, the transformed status of a cell is believed to promote reovirus replication and viral "oncolysis", resistant Tb1.Lu cells exhibit a classical phenotype of transformed cells by forming colonies in semisolid soft agar medium. Further transduction of Tb.Lu cells with a constitutively active Ras oncogene does not seem to affect cell growth or reovirus effect on these cells. Infected Tb1.Lu cells can produce low-level of infectious virus for a long time without any apparent effect, although these cells are resistant to reinfection. The results suggest that Tb1.Lu cells can mount an unusual antiviral response. Specific properties of bat cells may thus be in part responsible for the ability of the animals to act as reservoirs for viruses in general and for novel reoviruses in particular. Their peculiar resistance to cell lysis also makes Tb1.Lu cells an attractive model to study the cellular and viral factors that determine the ability of reovirus to replicate and destroy infected cells.
Collapse
Affiliation(s)
- Véronique Sandekian
- Département de microbiologie et immunologie, Université de Montréal, Montréal, Canada H3C 3J7
| | | | | | | |
Collapse
|
4
|
Kim M, Garant KA, zur Nieden NI, Alain T, Loken SD, Urbanski SJ, Forsyth PA, Rancourt DE, Lee PWK, Johnston RN. Attenuated reovirus displays oncolysis with reduced host toxicity. Br J Cancer 2010; 104:290-9. [PMID: 21179029 PMCID: PMC3031901 DOI: 10.1038/sj.bjc.6606053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although the naturally occurring reovirus causes only mild symptoms in humans, it shows considerable potential as an oncolytic agent because of its innate ability to target cancer cells. In immunocompromised hosts, however, wild-type reovirus can target healthy tissues, including heart, liver, pancreas and neural structures. METHODS We characterized an attenuated form of reovirus (AV) derived from a persistently infected cell line through sequence analysis, as well as western blot and in vitro transcription and translation techniques. To examine its pathogenesis and oncolytic potential, AV reovirus was tested on healthy embryonic stem cells, various non-transformed and transformed cell lines, and in severe combined immunodeficiency (SCID) mice with tumour xenografts. RESULTS Sequence analysis of AV reovirus revealed a premature STOP codon in its sigma 1 attachment protein. Western blot and in vitro translation confirmed the presence of a truncated σ1. In comparison to wild-type reovirus, AV reovirus did not kill healthy stem cells or induce black tail formation in SCID mice. However, it did retain its ability to target cancer cells and reduce tumour size. CONCLUSION Despite containing a truncated attachment protein, AV reovirus still preferentially targets cancer cells, and compared with wild-type reovirus it shows reduced toxicity when administered to immunodeficient hosts, suggesting the potential use of AV reovirus in combination cancer therapy.
Collapse
Affiliation(s)
- M Kim
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alain T, Kim M, Johnston RN, Urbanski S, Kossakowska AE, Forsyth PA, Lee PWK. The oncolytic effect in vivo of reovirus on tumour cells that have survived reovirus cell killing in vitro. Br J Cancer 2006; 95:1020-7. [PMID: 17047650 PMCID: PMC2360720 DOI: 10.1038/sj.bjc.6603363] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The use of oncolytic viruses has received considerable attention in recent years and many viruses have proved to be effective against a variety of cancer models and a few are currently being used in clinical trials. However, the possible emergence and outcome of virus-resistant tumour cells has not been addressed. We previously reported the effective use of reovirus against lymphoid malignancies, including the Burkitt's lymphoma cell line Raji. Here we isolated in vitro persistently infected (PI) Raji cells, and cells ‘cured’ of persistent reovirus infection (‘cured’ cells). Both PI and cured Raji cells resisted reovirus infection and cell killing in vitro. In vivo, the PI cells were non-tumorigenic in SCID mice, but cured cells regained the parental cells' ability to form tumours. Tumour xenografts from the cured cells, however, were highly susceptible to reovirus oncolysis in vivo. This susceptibility was due to the proteolytic environment within tumours that facilitates reovirus infection and cell killing. Our results show that persistent infection by reovirus impedes tumour development and that although PI cells cleared of reovirus are tumorigenic, they are killed upon rechallenge with reovirus. Both the PI and cured states are therefore not likely to be significant barriers to reovirus oncolytic therapy.
Collapse
Affiliation(s)
- T Alain
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
| | - M Kim
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
| | - R N Johnston
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
| | - S Urbanski
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - A E Kossakowska
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | - P A Forsyth
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
| | - P W K Lee
- Department of Medical Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology and Immunology, Dalhousie University, 7/F Sir Charles Tupper Building, 5850 College Street, Halifax, Nova Scotia, Canada B3H 1X5
- E-mail:
| |
Collapse
|
6
|
Wilson GJ, Nason EL, Hardy CS, Ebert DH, Wetzel JD, Venkataram Prasad BV, Dermody TS. A single mutation in the carboxy terminus of reovirus outer-capsid protein sigma 3 confers enhanced kinetics of sigma 3 proteolysis, resistance to inhibitors of viral disassembly, and alterations in sigma 3 structure. J Virol 2002; 76:9832-43. [PMID: 12208961 PMCID: PMC136532 DOI: 10.1128/jvi.76.19.9832-9843.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian reoviruses undergo acid-dependent proteolytic disassembly within endosomes, resulting in formation of infectious subvirion particles (ISVPs). ISVPs are obligate intermediates in reovirus disassembly that mediate viral penetration into the cytoplasm. The initial biochemical event in the reovirus disassembly pathway is the proteolysis of viral outer-capsid protein sigma 3. Mutant reoviruses selected during persistent infection of murine L929 cells (PI viruses) demonstrate enhanced kinetics of viral disassembly and resistance to inhibitors of endocytic acidification and proteolysis. To identify sequences in sigma 3 that modulate acid-dependent and protease-dependent steps in reovirus disassembly, the sigma 3 proteins of wild-type strain type 3 Dearing; PI viruses L/C, PI 2A1, and PI 3-1; and four novel mutant sigma 3 proteins were expressed in insect cells and used to recoat ISVPs. Treatment of recoated ISVPs (rISVPs) with either of the endocytic proteases cathepsin L or cathepsin D demonstrated that an isolated tyrosine-to-histidine mutation at amino acid 354 (Y354H) enhanced sigma 3 proteolysis during viral disassembly. Yields of rISVPs containing Y354H in sigma3 were substantially greater than those of rISVPs lacking this mutation after growth in cells treated with either acidification inhibitor ammonium chloride or cysteine protease inhibitor E64. Image reconstructions of electron micrographs of virus particles containing wild-type or mutant sigma 3 proteins revealed structural alterations in sigma 3 that correlate with the Y354H mutation. These results indicate that a single mutation in sigma 3 protein alters its susceptibility to proteolysis and provide a structural framework to understand mechanisms of sigma 3 cleavage during reovirus disassembly.
Collapse
Affiliation(s)
- Gregory J Wilson
- Departments of Pediatrics and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|