1
|
Derse D, Crise B, Li Y, Princler G, Lum N, Stewart C, McGrath CF, Hughes SH, Munroe DJ, Wu X. Human T-cell leukemia virus type 1 integration target sites in the human genome: comparison with those of other retroviruses. J Virol 2007; 81:6731-41. [PMID: 17409138 PMCID: PMC1900082 DOI: 10.1128/jvi.02752-06] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Retroviral integration into the host genome is not entirely random, and integration site preferences vary among different retroviruses. Human immunodeficiency virus (HIV) prefers to integrate within active genes, whereas murine leukemia virus (MLV) prefers to integrate near transcription start sites and CpG islands. On the other hand, integration of avian sarcoma-leukosis virus (ASLV) shows little preference either for genes, transcription start sites, or CpG islands. While host cellular factors play important roles in target site selection, the viral integrase is probably the major viral determinant. It is reasonable to hypothesize that retroviruses with similar integrases have similar preferences for target site selection. Although integration profiles are well defined for members of the lentivirus, spumaretrovirus, alpharetrovirus, and gammaretrovirus genera, no members of the deltaretroviruses, for example, human T-cell leukemia virus type 1 (HTLV-1), have been evaluated. We have mapped 541 HTLV-1 integration sites in human HeLa cells and show that HTLV-1, like ASLV, does not specifically target transcription units and transcription start sites. Comparing the integration sites of HTLV-1 with those of ASLV, HIV, simian immunodeficiency virus, MLV, and foamy virus, we show that global and local integration site preferences correlate with the sequence/structure of virus-encoded integrases, supporting the idea that integrase is the major determinant of retroviral integration site selection. Our results suggest that the global integration profiles of other retroviruses could be predicted from phylogenetic comparisons of the integrase proteins. Our results show that retroviruses that engender different insertional mutagenesis risks can have similar integration profiles.
Collapse
Affiliation(s)
- David Derse
- HIV Drug Resistance Program, Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, 915 Toll House Avenue, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Koonin EV, Senkevich TG, Dolja VV. The ancient Virus World and evolution of cells. Biol Direct 2006; 1:29. [PMID: 16984643 PMCID: PMC1594570 DOI: 10.1186/1745-6150-1-29] [Citation(s) in RCA: 404] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 09/19/2006] [Indexed: 01/05/2023] Open
Abstract
Background Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from independent considerations, seem to be the most parsimonious among the existing ones. Results Several genes coding for key proteins involved in viral replication and morphogenesis as well as the major capsid protein of icosahedral virions are shared by many groups of RNA and DNA viruses but are missing in cellular life forms. On the basis of this key observation and the data on extensive genetic exchange between diverse viruses, we propose the concept of the ancient virus world. The virus world is construed as a distinct contingent of viral genes that continuously retained its identity throughout the entire history of life. Under this concept, the principal lineages of viruses and related selfish agents emerged from the primordial pool of primitive genetic elements, the ancestors of both cellular and viral genes. Thus, notwithstanding the numerous gene exchanges and acquisitions attributed to later stages of evolution, most, if not all, modern viruses and other selfish agents are inferred to descend from elements that belonged to the primordial genetic pool. In this pool, RNA viruses would evolve first, followed by retroid elements, and DNA viruses. The Virus World concept is predicated on a model of early evolution whereby emergence of substantial genetic diversity antedates the advent of full-fledged cells, allowing for extensive gene mixing at this early stage of evolution. We outline a scenario of the origin of the main classes of viruses in conjunction with a specific model of precellular evolution under which the primordial gene pool dwelled in a network of inorganic compartments. Somewhat paradoxically, under this scenario, we surmise that selfish genetic elements ancestral to viruses evolved prior to typical cells, to become intracellular parasites once bacteria and archaea arrived at the scene. Selection against excessively aggressive parasites that would kill off the host ensembles of genetic elements would lead to early evolution of temperate virus-like agents and primitive defense mechanisms, possibly, based on the RNA interference principle. The emergence of the eukaryotic cell is construed as the second melting pot of virus evolution from which the major groups of eukaryotic viruses originated as a result of extensive recombination of genes from various bacteriophages, archaeal viruses, plasmids, and the evolving eukaryotic genomes. Again, this vision is predicated on a specific model of the emergence of eukaryotic cell under which archaeo-bacterial symbiosis was the starting point of eukaryogenesis, a scenario that appears to be best compatible with the data. Conclusion The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes (virus hallmark genes) suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day. This concept is tightly linked to two key conjectures on evolution of cells: existence of a complex, precellular, compartmentalized but extensively mixing and recombining pool of genes, and origin of the eukaryotic cell by archaeo-bacterial fusion. The virus world concept and these models of major transitions in the evolution of cells provide complementary pieces of an emerging coherent picture of life's history. Reviewers W. Ford Doolittle, J. Peter Gogarten, and Arcady Mushegian.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, USA
| | - Tatiana G Senkevich
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
3
|
Abstract
Uma das características mais marcantes do HIV-1 é a imensa diversidade observada entre as cepas que compõem a pandemia de HIV/AIDS. Na última década, a classificação das variantes do vírus em grupos, subtipos e formas recombinantes circulantes (CRF) e a observação de padrões específicos de mutação têm provado serem ferramentas poderosas para os estudos da dinâmica molecular do vírus. O acompanhamento da distribuição mundial da diversidade do HIV-1 tem sido empregado, por exemplo, em programas de vigilância epidemiológica, bem como na reconstrução da história de epidemias regionais. Além disto, a observação de padrões específicos de distribuição espacial do vírus sugere a existência de diferenças na patogenia e transmissibilidade entre os diversos subtipos. A análise molecular das seqüências do vírus também permite a estimativa do tempo de divergência entre as variantes e das forças dinâmicas que modelam as árvores filogenéticas.
Collapse
Affiliation(s)
- Mônica Edelenyi Pinto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
4
|
Abstract
The retroviral capacity for integration into the host genome can give rise to endogenous retroviruses (ERVs): retroviral sequences that are transmitted vertically as part of the host germ line, within which they may continue to replicate and evolve. ERVs represent both a unique archive of ancient viral sequence information and a dynamic component of host genomes. As such they hold great potential as informative markers for studies of both virus evolution and host genome evolution. Numerous novel ERVs have been described in recent years, particularly as genome sequencing projects have advanced. This review discusses the evolution of ERV lineages, considering the processes by which ERV distribution and diversity is generated. The diversity of ERVs isolated so far is summarised in terms of both their distribution across host taxa, and their relationships to recognised retroviral genera. Finally the relevance of ERVs to studies of genome evolution, host disease and viral ecology is considered, and recent findings discussed.
Collapse
Affiliation(s)
- Robert Gifford
- Department of Biological Sciences, Imperial College, Silwood Park, Buckhurst Road, Ascot Berkshire, SL5 7PY, UK
| | | |
Collapse
|
5
|
Bénit L, Dessen P, Heidmann T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 2001; 75:11709-19. [PMID: 11689652 PMCID: PMC114757 DOI: 10.1128/jvi.75.23.11709-11719.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic analyses of retroviral elements, including endogenous retroviruses, have relied essentially on the retroviral pol gene expressing the highly conserved reverse transcriptase. This enzyme is essential for the life cycle of all retroid elements, but other genes are also endowed with conserved essential functions. Among them, the transmembrane (TM) subunit of the envelope gene is involved in virus entry through membrane fusion. It has also been reported to contain a domain, named the immunosuppressive domain, that has immunosuppressive properties most probably essential for virus spread within the host. This domain is conserved among a large series of retroviral elements, and we have therefore attempted to generate phylogenetic links between retroviral elements identified from databases following tentative alignments of the immunosuppressive domain and adjacent sequences. This allowed us to unravel a conserved organization among TM domains, also found in the Ebola and Marburg filoviruses, and to identify a large number of human endogenous retroviruses (HERVs) from sequence databases. The latter elements are part of previously identified families of HERVs, and some of them define new families. A general phylogenetic analysis based on the TM proteins of retroelements, and including those with no clearly identified immunosuppressive domain, could then be derived and compared with pol-based phylogenetic trees, providing a comprehensive survey of retroelements and definitive evidence for recombination events in the generation of both the endogenous and the present-day infectious retroviruses.
Collapse
Affiliation(s)
- L Bénit
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, CNRS UMR 1573, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
6
|
|
7
|
Abstract
This report describes the identification and characterization of a retrotransposon, termed Tca5, from the pathogenic yeast Candida albicans. Tca5 has identical 685 bp LTRs flanking 4218 bp of internal sequence within which lies a single long ORF. Immediately internal to the left LTR is a primer binding site complementary to an internal portion of the initiator methionine tRNA and upstream of the right LTR is a polypurine tract. The ORF predicts a protein containing all the conserved motifs characteristic of Gag, protease, integrase, reverse transcriptase and RNaseH. Genomic Southern blots probed with Tca5 sequences show that it is a low copy number element and is present at different loci in different strains. This, together with the apparently intact structure of Tca5, suggests that it has transposed very recently. Potentially full-length Tca5 transcripts were detected in some strains raising the possibility that some copies of Tca5 may still be active. Phylogenetic analyses and other sequence comparisons suggest that Tca5 is most closely related to the Ty5 element of Saccharomyces cerevisiae and S. paradoxus. The nucleotide sequence of Tca5 has been submitted to GenBank under Accession No. AF093417.
Collapse
Affiliation(s)
- E P Plant
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
8
|
Chan AW, Homan EJ, Ballou LU, Burns JC, Bremel RD. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci U S A 1998; 95:14028-33. [PMID: 9826647 PMCID: PMC24320 DOI: 10.1073/pnas.95.24.14028] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical requirement for integration of retroviruses, other than HIV and possibly related lentiviruses, is the breakdown of the nuclear envelope during mitosis. Nuclear envelope breakdown occurs during mitotic M-phase, the envelope reforming immediately after cell division, thereby permitting the translocation of the retroviral preintegration complex into the nucleus and enabling integration to proceed. In the oocyte, during metaphase II (MII) of the second meiosis, the nuclear envelope is also absent and the oocyte remains in MII arrest for a much longer period of time compared with M-phase in a somatic cell. Pseudotyped replication-defective retroviral vector was injected into the perivitelline space of bovine oocytes during MII. We show that reverse-transcribed gene transfer can take place in an oocyte in MII arrest of meiosis, leading to production of offspring, the majority of which are transgenic. We discuss the implications of this mechanism both as a means of production of transgenic livestock and as a model for naturally occurring recursive transgenesis.
Collapse
Affiliation(s)
- A W Chan
- Endocrinology-Reproductive Physiology Program, University of Wisconsin, 1675 Observatory Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Human endogenous retroviruses (HERVs) have recently been suggested as mediators of normal biological processes such as cellular differentiation and regulation of gene expression. Moreover, a direct role for HERVs in pathogenesis and the development of disease is now better appreciated. Elucidation of the mechanisms regulating HERV biology should provide information about fundamental cellular activities and the pathogenesis of multifactorial diseases such as cancer and autoimmune disease. The importance of understanding the roles of HERVs is underscored by the recently obtained insight that activation of endogenous retroviruses poses potential risks following xenotransplantation and in gene therapy using retroviral vectors. Furthermore, HERV-encoded superantigens have recently been implicated as causes of autoimmune disease. This review discusses the established and possible biological roles of HERVs, and proposes hypotheses concerning their involvement as mediators of fundamental cellular responses. We propose that the evolutionary persistence of endogenous retroviruses in the genomes of eukaryotic cells reflects their indispensability in important normal functions in specialized cellular environments. HERVs can also be potentially hazardous through their involvement in the development of disease. In addition, the creation of new retroviruses can occur through recombination, between different HERVs and between HERVs and exogenous retroviruses.
Collapse
Affiliation(s)
- E Larsson
- Department of Genetics and Pathology, University of Uppsala, University Hospital, Sweden
| | | |
Collapse
|
10
|
Pardue ML, Danilevskaya ON, Traverse KL, Lowenhaupt K. Evolutionary links between telomeres and transposable elements. Genetica 1997. [PMID: 9440260 DOI: 10.1007/978-94-011-4898-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Transposable elements are abundant in the genomes of higher organisms but are usually thought to affect cells only incidentally, by transposing in or near a gene and influencing its expression. Telomeres of Drosophila chromosomes are maintained by two non-LTR retrotransposons, HeT-A and TART. These are the first transposable elements with identified roles in chromosome structure. We suggest that these elements may be evolutionarily related to telomerase; in both cases an enzyme extends the end of a chromosome by adding DNA copied from an RNA template. The evolution of transposable elements from chromosomal replication mechanisms may have occurred multiple times, although in other organisms the new products have not replaced the endogenous telomerase, as they have in Drosophila. This is somewhat reminiscent of the oncogenes that have arisen from cellular genes. Perhaps the viruses that carry oncogenes have also arisen from cellular genetic systems.
Collapse
Affiliation(s)
- M L Pardue
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
|
13
|
|
14
|
Holzschu DL, Martineau D, Fodor SK, Vogt VM, Bowser PR, Casey JW. Nucleotide sequence and protein analysis of a complex piscine retrovirus, walleye dermal sarcoma virus. J Virol 1995; 69:5320-31. [PMID: 7636975 PMCID: PMC189371 DOI: 10.1128/jvi.69.9.5320-5331.1995] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Walleye dermal sarcoma virus (WDSV) is a fish retrovirus associated with the development of tumors in walleyes. We have determined the complete nucleotide sequence of a DNA clone of WDSV, the N-terminal amino acid sequences of the major proteins, and the start site for transcription. The long terminal repeat is 590 bp in length, with the U3 region containing consensus sequences likely to be involved in viral gene expression. A predicted histidyl-tRNA binding site is located 3 nucleotides distal to the 3' end of the long terminal repeat. Virus particles purified by isopycnic sedimentation followed by rate zonal sedimentation showed major polypeptides with molecular sizes of 90, 25, 20, 14, and 10 kDa. N-terminal sequencing of these allowed unambiguous assignment of the small polypeptides as products of the gag gene, including CA and NC, and the large polypeptide as the TM product of env. The 582-amino-acid (aa) Gag protein precursor is predicted to be myristylated as is found for most retroviruses. NC contains a single Cys-His motif like those found in all retroviruses except spumaviruses. The WDSV pro and pol genes are in the same translational reading frame as gag and thus apparently are translated after termination suppression. The env gene encodes a surface (SU) protein of 469 aa predicted to be highly glycosylated and a large transmembrane (TM) protein of 754 aa. The sequence of TM is unusual in that it ends in a very hydrophobic segment of 65 residues containing a single charged residue. Following the env gene are two nonoverlapping long open reading frames of 290 aa (orf-A) and 306 aa (orf-B), neither of which shows significant sequence similarity with known genes. A third open reading frame of 119 aa (orf-C) is located in the leader region preceding gag. The predicted amino acid sequence of reverse transcriptase would place WDSV phylogenetically closest to the murine leukemia virus-related genus of retroviruses. However, other members of this genus do not have accessory genes, suggesting that WDSV acquired orf-A, orf-B, and perhaps orf-C late in its evolution. We hypothesize by analogy with other complex retroviruses that the accessory genes of WDSV function in the regulation of transcription and in RNA processing and also in the induction of walleye dermal sarcoma.
Collapse
Affiliation(s)
- D L Holzschu
- Department of Microbiology, Parasitology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
15
|
Rothnie HM, Chapdelaine Y, Hohn T. Pararetroviruses and retroviruses: a comparative review of viral structure and gene expression strategies. Adv Virus Res 1994; 44:1-67. [PMID: 7817872 DOI: 10.1016/s0065-3527(08)60327-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H M Rothnie
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
16
|
Frech K, Herrmann G, Werner T. Computer-assisted prediction, classification, and delimitation of protein binding sites in nucleic acids. Nucleic Acids Res 1993; 21:1655-64. [PMID: 8479918 PMCID: PMC309377 DOI: 10.1093/nar/21.7.1655] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We present a method to determine the location and extent of protein binding regions in nucleic acids by computer-assisted analysis of sequence data. The program ConsIndex establishes a library of consensus descriptions based on sequence sets containing known regulatory elements. These defined consensus descriptions are used by the program ConsInspector to predict binding sites in new sequences. We show the programs to correctly determine the significant regions involved in transcriptional control of seven sequence elements. The internal profile of relative variability of individual nucleotide positions within these regions paralleled experimental profiles of biological significance. Consensus descriptions are determined by employing an anchored alignment scheme, the results of which are then evaluated by a novel method which is superior to cluster algorithms. The alignment procedure is able to include several closely related sequences without biasing the consensus description. Moreover, the algorithm detects additional elements on the basis of a moderate distance correlation and is capable of discriminating between real binding sites and false positive matches. The software is well suited to cope with the frequent phenomenon of optional elements present in a subset of functionally similar sequences, while taking maximal advantage of the existing sequence data base. Since it requires only a minimum of seven sequences for a single element, it is applicable to a wide range of binding sites.
Collapse
Affiliation(s)
- K Frech
- Institut für Säugetiergenetik, GSF-Forschungszentrum für Umwelt und Gesundheit mbH, Neuherberg, Germany
| | | | | |
Collapse
|
17
|
Palker TJ, Riggs ER, Spragion DE, Muir AJ, Scearce RM, Randall RR, McAdams MW, McKnight A, Clapham PR, Weiss RA. Mapping of homologous, amino-terminal neutralizing regions of human T-cell lymphotropic virus type I and II gp46 envelope glycoproteins. J Virol 1992; 66:5879-89. [PMID: 1326649 PMCID: PMC241464 DOI: 10.1128/jvi.66.10.5879-5889.1992] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Twelve synthetic peptides containing hydrophilic amino acid sequences of human T-cell lymphotropic virus type I (HTLV-I) envelope glycoprotein were coupled to tetanus toxoid and used to raise epitope-specific antisera in goats and rabbits. Low neutralizing antibody titers (1:10 to 1:20) raised in rabbits to peptides SP-2 (envelope amino acids [aa] 86 to 107), SP-3 (aa 176 to 189), and SP-4A (aa 190 to 209) as well as to combined peptide SP-3/4A (aa 176 to 209) were detected in the vesicular stomatitis virus-HTLV-I pseudotype assay. Higher-titered neutralizing antibody responses to HTLV-I (1:10 to 1:640) were detected with pseudotype and syncytium inhibition assays in four goats immunized with a combined inoculum containing peptides SP-2, SP-3, and SP-4A linked to tetanus toxoid. These neutralizing anti-HTLV-I antibodies were type specific in that they did not inhibit HTLV-II syncytium formation. Neutralizing antibodies in sera from three goats could be absorbed with peptide SP-2 (aa 86 to 107) as well as truncated peptides containing envelope aa 90 to 98, but not with equimolar amounts of peptides lacking envelope aa 90 to 98. To map critical amino acids that contributed to HTLV-I neutralization within aa 88 to 98, peptides in which each amino acid was sequentially replaced by alanine were synthesized. The resulting 11 synthetic peptides with single alanine substitutions were then used to absorb three neutralizing goat antipeptide antisera. Both asparagines at positions 93 and 95 were required for adsorption of neutralizing anti-HTLV-I antibodies from all three sera. Peptide DP-90, containing the homologous region of HTLV-II envelope glycoprotein (aa 82 to 97), elicited antipeptide neutralizing antibodies to HTLV-II in goats that were type specific. In further adsorption experiments, it was determined that amino acid differences between homologous HTLV-I and HTLV-II envelope sequences at HTLV-I aa 95 (N to Q) and 97 (G to L) determined the type specificity of these neutralizing sites. Thus, the amino-terminal regions of HTLV-I and -II gp46 contain homologous, linear, neutralizing determinants that are type specific.
Collapse
Affiliation(s)
- T J Palker
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stuart GR, Dixon B, Pohajdak B. Isolation of a putative retrovirus pol gene fragment from trout. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 102:137-42. [PMID: 1526119 DOI: 10.1016/0305-0491(92)90285-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. A 220 bp DNA fragment was obtained from three different species of salmonids during PCR analysis using a primer sequence based on human beta-2 microglobulin. All of the 220 bp fragments showed strong homology to each other. 2. Several of the DNA sequences also contained protein reading frames. Searching DNA and protein databases revealed significant homology to a segment of the pol gene (reverse transcriptase) from various retroviruses. Phylogenetic analysis at both the DNA and the protein levels showed clustering of the fish sequences and the closest viral sequence was the Moloney murine leukaemia virus (MoMuLV). Southern analysis indicated that there are several copies of the gene dispersed throughout the salmonid genome. 3. Preliminary results suggest that these sequences may be unique to the family Salmonidae. This would suggest that this retrovirus was incorporated in the DNA of an ancestral salmonid prior to the evolution and divergence of this family of fish.
Collapse
Affiliation(s)
- G R Stuart
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
19
|
Kewalramani VN, Panganiban AT, Emerman M. Spleen necrosis virus, an avian immunosuppressive retrovirus, shares a receptor with the type D simian retroviruses. J Virol 1992; 66:3026-31. [PMID: 1313915 PMCID: PMC241062 DOI: 10.1128/jvi.66.5.3026-3031.1992] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The reticuloendotheliosis viruses (REV) are a family of highly related retroviruses isolated from gallinaceous birds. On the basis of sequence comparison and overall genome organization, these viruses are more similar to the mammalian type C retroviruses than to the avian sarcoma/leukemia viruses. The envelope of a member of the REV family, spleen necrosis virus (SNV), is about 50% identical in amino acid sequence to the envelope of the type D simian retroviruses. Although SNV does not productively infect primate or murine cells, the receptor for SNV is present on a variety of human and murine cells. Moreover, interference assays show that the receptor for SNV is the same as the receptor for the type D simian retroviruses. We propose that adaptation of a mammalian type C virus to an avian host provided the REV progenitor.
Collapse
Affiliation(s)
- V N Kewalramani
- Program in Molecular Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104
| | | | | |
Collapse
|
20
|
Abstract
Reverse transcriptase sequences, which are fundamental to retrovirus existence, are widely distributed in the living world. Phylogenies based on their sequences set vertebrate retroviruses apart as relatively modern creations. Their nearest evolutionary relatives are a large group of transposable elements that have all the standard retrovirus equipment except spliced envelope proteins. The distribution of these elements suggests a long-standing presence predating the radiation of plants, fungi, and animals. There is another large group of elements, LINEs, that also contain recognizable reverse transcriptase sequences and which likely diverged even earlier, as evidenced by their presence in trypanosomes and other protists. They lack tRNA priming sites--which they could have lost--but they do exhibit characteristic eukaryotic polyadenylation. These elements are problematic in that the sequences are so degenerate in most instances that it is not possible to identify the accessory enzymes or structural proteins with any confidence, leaving major gaps in our reconstruction of events. Even with these gaps, however, the historical beginnings of retroviruses can be traced back to events coincident with the prokaryotic invasion of primitive eukaryotes.
Collapse
Affiliation(s)
- R F Doolittle
- Center for Molecular Genetics, University of California, San Diego, La Jolla 92093-0634
| | | |
Collapse
|