1
|
Amit M, Winkler ME, Menke S, Brüning E, Büscher K, Denner J, Haverich A, Itskovitz-Eldor J, Martin U. No evidence for infection of human embryonic stem cells by feeder cell-derived murine leukemia viruses. Stem Cells 2005; 23:761-71. [PMID: 15917472 DOI: 10.1634/stemcells.2004-0046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Until recently, culture and expansion of nondifferentiated human embryonic stem cells (hESCs) depended on coculture with murine embryonic fibroblasts. Because mice are known to harbor a variety of pathogens, such culture conditions implicate the risk of xenozoonoses. Among these pathogens, endogenous retroviruses, including murine leukemia viruses (MuLVs), are of special importance. It is well known that some strains cause pathogenic (e.g., leukemic) effects and that xenotropic, polytropic, and amphotropic MuLVs are able to infect human cells. In view of potential clinical applications of hESC lines, it is therefore imperative to investigate potential infection of hESCs by mouse feeder cell-derived viruses. As a first step towards a comprehensive infection risk assessment, we have analyzed embryonic fibroblasts derived from different mouse strains for expression and release of xenotropic, polytropic, and amphotropic MuLVs. Moreover, several hESC lines have been investigated for expression of specific receptors for xenotropic/polytropic MuLVs, as well as for MuLV infection and expression. Evidence for expression of humantropic MuLVs was found in cultures of mouse embryonic fibroblasts (MEFs). Moreover, expression of specific receptors for xenotropic/ polytropic MuLV on human HEK293 and hESC lines and infection after coculture with an MuLV-producing mink cell line could be demonstrated. In contrast, no evidence of MuLV transmission from MEFs to human HEK293 cells or to the hESC lines I-3, I-6, I-8, and H-9 has been obtained. Our results suggest that recently established hESC lines are free of MuLV infections despite long-term close contact with MEFs.
Collapse
Affiliation(s)
- Michal Amit
- Department of Obstetrics and Gynecology, Rambam Medical Center, Faculty of Medicine, The Technion, Haifa, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci U S A 1997; 94:7583-8. [PMID: 9207135 PMCID: PMC23865 DOI: 10.1073/pnas.94.14.7583] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1997] [Accepted: 04/24/1997] [Indexed: 02/04/2023] Open
Abstract
The partial molecular characterization of multiple sclerosis (MS)-associated retrovirus (MSRV), a novel retrovirus previously called LM7, is reported. MSRV has been isolated repeatedly from leptomeningeal, choroid plexus and from Epstein-Barr virus-immortalized B cells of MS patients. A strategy based on reverse transcriptase PCR with RNA-purified extracellular virions yielded an initial pol fragment from which other regions of the retroviral genome were subsequently obtained by sequence extension. MSRV-specific PCR primers amplified a pol region from RNA present at the peak of reverse transcriptase activity, coinciding with extracellular viral particles in sucrose density gradients. The same sequence was detected in noncellular RNA from MS patient plasma and in cerebrospinal fluid from untreated MS patients. MSRV is related to, but distinct from, the endogenous retroviral sequence ERV9. Whether MSRV represents an exogenous retrovirus with closely related endogenous elements or a replication-competent, virion-producing, endogenous provirus is as yet unknown. Further molecular epidemiological studies are required to determine precisely the apparent association of virions containing MSRV RNA with MS.
Collapse
Affiliation(s)
- H Perron
- bioMérieux SA, Unité Mixte de Recherche 103, Centre National de la Recherche Scientifique-bioMérieux, 46, Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Münk C, Löhler J, Prassolov V, Just U, Stockschläder M, Stocking C. Amphotropic murine leukemia viruses induce spongiform encephalomyelopathy. Proc Natl Acad Sci U S A 1997; 94:5837-42. [PMID: 9159161 PMCID: PMC20867 DOI: 10.1073/pnas.94.11.5837] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinants of amphotropic murine leukemia virus (A-MuLV) have found widespread use in retroviral vector systems due to their ability to efficiently and stably infect cells of several different species, including human. Previous work has shown that replication-competent recombinants containing the amphotropic env gene, encoding the major SU envelope glycoprotein that determines host tropism, induce lymphomas in vivo. We show here that these viruses also induce a spongiform encephalomyelopathy in mice inoculated perinatally. This fatal central nervous system disease is characterized by noninflammatory spongiform lesions of nerve and glial cells and their processes, and is associated with moderate astro- and microgliosis. The first clinical symptoms are ataxia, tremor, and spasticity, progressing to complete tetraparesis and incontinence, and finally death of the animal. Sequences within the amphotropic env gene are necessary for disease induction. Coinfection of A-MuLV recombinants with nonneuropathogenic ecotropic or polytropic MuLV drastically increases the incidence, degree, and distribution of the neurodegenerative disorder. The consequence of these results in view of the use of A-MuLV recombinants in the clinic is discussed.
Collapse
Affiliation(s)
- C Münk
- Department of Cell and Virus Genetics, Heinrich-Pette-Institut für experimentelle Virologie und Immunologie, Martinistrasse 52, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Portis JL, Czub S, Robertson S, McAtee F, Chesebro B. Characterization of a neurologic disease induced by a polytropic murine retrovirus: evidence for differential targeting of ecotropic and polytropic viruses in the brain. J Virol 1995; 69:8070-5. [PMID: 7494324 PMCID: PMC189756 DOI: 10.1128/jvi.69.12.8070-8075.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A variety of ecotropic murine leukemia viruses cause neurodegenerative disease. We describe here the clinical and histopathological features of a neurologic disease induced by a polytropic murine leukemia virus, FMCF98. Clinical disease was dominated by hyperexcitability and ataxia, and the histopathology was characterized primarily by astrocytosis and astrocytic degeneration. The viral envelope gene harbored the determinants of neurovirulence, since the chimeric virus Fr98E, which contained the envelope gene of FMCF98 on a background of the nonneurovirulent virus FB29, caused a similar disease. The disease caused by Fr98E differed from that induced by the coisogenic neurovirulent ecotropic virus FrCasE in clinical presentation, histopathology, and distribution of virus in the central nervous system. Since Fr98E contains a polytropic envelope gene and FrCasE contains an ecotropic envelope gene, these phenotypic differences appeared to be determined by envelope sequences and may reflect differences in virus receptor usage in the central nervous system.
Collapse
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
5
|
Anderson GW, Palmer GA, Rowland RR, Even C, Plagemann PG. Infection of central nervous system cells by ecotropic murine leukemia virus in C58 and AKR mice and in in utero-infected CE/J mice predisposes mice to paralytic infection by lactate dehydrogenase-elevating virus. J Virol 1995; 69:308-19. [PMID: 7983723 PMCID: PMC188577 DOI: 10.1128/jvi.69.1.308-319.1995] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Certain mouse strains, such as AKR and C58, which possess N-tropic, ecotropic murine leukemia virus (MuLV) proviruses and are homozygous at the Fv-1n locus are specifically susceptible to paralytic infection (age-dependent poliomyelitis [ADPM]) by lactate dehydrogenase-elevating virus (LDV). Our results provide an explanation for this genetic linkage and directly prove that ecotropic MuLV infection of spinal cord cells is responsible for rendering anterior horn neurons susceptible to cytocidal LDV infection, which is the cause of the paralytic disease. Northern (RNA) blot hybridization of total tissue RNA and in situ hybridization of tissue sections demonstrated that only mice harboring central nervous system (CNS) cells that expressed ecotropic MuLV were susceptible to ADPM. Our evidence indicates that the ecotropic MuLV RNA is transcribed in CNS cells from ecotropic MuLV proviruses that have been acquired by infection with exogenous ecotropic MuLV, probably during embryogenesis, the time when germ line proviruses in AKR and C58 mice first become activated. In young mice, MuLV RNA-containing cells were found exclusively in white-matter tracts and therefore were glial cells. An increase in the ADPM susceptibility of the mice with advancing age correlated with the presence of an increased number of ecotropic MuLV RNA-containing cells in the spinal cords which, in turn, correlated with an increase in the number of unmethylated proviruses in the DNA extracted from spinal cords. Studies with AKXD recombinant inbred strains showed that possession of a single replication-competent ecotropic MuLV provirus (emv-11) by Fv-1n/n mice was sufficient to result in ecotropic MuLV infection of CNS cells and ADPM susceptibility. In contrast, no ecotropic MuLV RNA-positive cells were present in the CNSs of mice carrying defective ecotropic MuLV proviruses (emv-3 or emv-13) or in which ecotropic MuLV replication was blocked by the Fv-1n/b or Fv-1b/b phenotype. Such mice were resistant to paralytic LDV infection. In utero infection of CE/J mice, which are devoid of any endogenous ecotropic MuLVs, with the infectious clone of emv-11 (AKR-623) resulted in the infection of CNS cells, and the mice became ADPM susceptible, whereas littermates that had not become infected with ecotropic MuLV remained ADPM resistant.
Collapse
Affiliation(s)
- G W Anderson
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis 55455-0312
| | | | | | | | | |
Collapse
|
6
|
Plagemann PG, Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Adv Virus Res 1992; 41:99-192. [PMID: 1315480 PMCID: PMC7131515 DOI: 10.1016/s0065-3527(08)60036-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The last comprehensive reviews of nonarbotogaviruses included discussions on pestiviruses, rubella virus, lactate dehydrogenase-elevating virus (LDV), equine arteritis virus (EAV), simian hemorrhagic fever virus (SHFV), cell fusion agent, and nonarboflaviviruses. The inclusion of all these viruses in the family Togaviridae was largely based on the similarities in morphological and physical–chemical properties of these viruses, and in the sizes and polarities of their genomes. In the intervening years, considerable new information on the replication strategies of these viruses and the structure and organization of their genomes has become available that has led to the reclassification or suggestions for reclassification of some of them. The replication strategy of EAV resembles that of the coronaviruses, involving a 3'-coterminal nested set of mRNAs. Therefore, EAV has been suggested to be included in a virus superfamily, along with coronaviruses and toroviruses. Recent evidence indicates that LDV not only resembles EAV in morphology, virion and genome size, and number and size of their structural proteins, but also in genome organization and replication via a 3'-coterminal set of mRNAs. SHFV, although not fully characterized, exhibits properties resembling those of LDV and EAV, and the recent evidence suggest that it may possess the same genome organization as these viruses. The three viruses may, therefore, represent a new family of positive-strand RNA viruses and are reviewed together in this chapter. In this chapter, emphasis is on the recent information concerning their molecular properties and pathogenesis in vitro and in vivo and on the host immune responses to infections by these viruses.
Collapse
Affiliation(s)
- P G Plagemann
- Department of Microbiology, University of Minnesota Medical School, Minneapolis 55455
| | | |
Collapse
|
7
|
Portis JL, Czub S, Garon CF, McAtee FJ. Neurodegenerative disease induced by the wild mouse ecotropic retrovirus is markedly accelerated by long terminal repeat and gag-pol sequences from nondefective Friend murine leukemia virus. J Virol 1990; 64:1648-56. [PMID: 2181155 PMCID: PMC249301 DOI: 10.1128/jvi.64.4.1648-1656.1990] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The wild mouse ecotropic retrovirus (WM-E) induces a spongiform neurodegenerative disease in mice after a variable incubation period of 2 months to as long as 1 year. We isolated a molecular clone of WM-E (15-1) which was weakly neurovirulent (incidence, 8%) but was highly leukemogenic (incidence, 45%). Both lymphoid and granulocytic leukemias were observed, and these leukemias were often neuroinvasive. A chimeric virus was constructed containing the env and 3' pol sequences of 15-1 and long terminal repeat (LTR), gag, and 5' pol sequences from a clone of Friend murine leukemia virus (FB29). FB29 has been shown previously to replicate to high levels in the central nervous system (CNS) but is not itself neurovirulent. This finding was confirmed at the DNA level in the current study. Surprisingly, intraperitoneal inoculation of neonatal IRW mice with the chimeric virus (FrCasE) caused an accelerated neurodegenerative disease with an incubation period of only 16 days and was uniformly fatal by 23 days postinoculation. Introduction of the LTR of 15-1 into the FrCasE genome yielded a virus (FrCasEL) with a degree of neurovirulence intermediate between those of 15-1 and FrCasE. No differences were found in the levels of viremia or the relative levels of viral DNA in the spleens of mice inoculated with 15-1, FrCasE, or FrCasEL. However, the levels of viral DNA in the CNS correlated with the relative degrees of neurovirulence of the respective viruses (FrCasE greater than FrCasEL greater than 15-1). Thus, the env and 3' pol sequences of WM-E (15-1) were required for neurovirulence, but elements within the LTR and gag-pol regions of FB29 had a profound influence on the level of CNS infection and the rate of development of neurodegeneration.
Collapse
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840
| | | | | | | |
Collapse
|