1
|
What Is Our Current Understanding of PrP Sc-Associated Neurotoxicity and Its Molecular Underpinnings? Pathogens 2017; 6:pathogens6040063. [PMID: 29194372 PMCID: PMC5750587 DOI: 10.3390/pathogens6040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
The prion diseases are a collection of fatal, transmissible neurodegenerative diseases that cause rapid onset dementia and ultimately death. Uniquely, the infectious agent is a misfolded form of the endogenous cellular prion protein, termed PrPSc. Despite the identity of the molecular agent remaining the same, PrPSc can cause a range of diseases with hereditary, spontaneous or iatrogenic aetiologies. However, the link between PrPSc and toxicity is complex, with subclinical cases of prion disease discovered, and prion neurodegeneration without obvious PrPSc deposition. The toxic mechanisms by which PrPSc causes the extensive neuropathology are still poorly understood, although recent advances are beginning to unravel the molecular underpinnings, including oxidative stress, disruption of proteostasis and induction of the unfolded protein response. This review will discuss the diseases caused by PrPSc toxicity, the nature of the toxicity of PrPSc, and our current understanding of the downstream toxic signaling events triggered by the presence of PrPSc.
Collapse
|
2
|
Terry C, Wenborn A, Gros N, Sells J, Joiner S, Hosszu LLP, Tattum MH, Panico S, Clare DK, Collinge J, Saibil HR, Wadsworth JDF. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils. Open Biol 2016; 6:rsob.160035. [PMID: 27249641 PMCID: PMC4892434 DOI: 10.1098/rsob.160035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP.
Collapse
Affiliation(s)
- Cassandra Terry
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Adam Wenborn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Nathalie Gros
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jessica Sells
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Susan Joiner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Laszlo L P Hosszu
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - M Howard Tattum
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Silvia Panico
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Daniel K Clare
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
3
|
Properzi F, Badhan A, Klier S, Schmidt C, Klöhn PC, Wadsworth JDF, Clarke AR, Jackson GS, Collinge J. Physical, chemical and kinetic factors affecting prion infectivity. Prion 2016; 10:251-61. [PMID: 27282252 PMCID: PMC4981209 DOI: 10.1080/19336896.2016.1181250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.
Collapse
Affiliation(s)
- Francesca Properzi
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Anjna Badhan
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Steffi Klier
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Christian Schmidt
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Peter C Klöhn
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Jonathan D F Wadsworth
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Anthony R Clarke
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Graham S Jackson
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - John Collinge
- a MRC Prion Unit, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| |
Collapse
|
4
|
Wenborn A, Terry C, Gros N, Joiner S, D'Castro L, Panico S, Sells J, Cronier S, Linehan JM, Brandner S, Saibil HR, Collinge J, Wadsworth JDF. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain. Sci Rep 2015; 5:10062. [PMID: 25950908 PMCID: PMC4423448 DOI: 10.1038/srep10062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/26/2015] [Indexed: 02/02/2023] Open
Abstract
Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method's effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions.
Collapse
Affiliation(s)
- Adam Wenborn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Cassandra Terry
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Nathalie Gros
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Susan Joiner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Laura D'Castro
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Silvia Panico
- Department of Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Jessica Sells
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sabrina Cronier
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Helen R Saibil
- Department of Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
5
|
Dorban G, Defaweux V, Levavasseur E, Demonceau C, Thellin O, Flandroy S, Piret J, Falisse N, Heinen E, Antoine N. Oral scrapie infection modifies the homeostasis of Peyer's patches' dendritic cells. Histochem Cell Biol 2007; 128:243-51. [PMID: 17622551 DOI: 10.1007/s00418-007-0303-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2007] [Indexed: 12/16/2022]
Abstract
In transmitted prion diseases the immune system supports the replication and the propagation of the pathogenic agent (PrPSc). DCs, which are mobile cells present in large numbers within lymph organs, are suspected to carry prions through the lymphoid system and to transfer them towards the peripheral nervous system. In this study, C57Bl/6 mice were orally inoculated with PrPSc (scrapie strain 139A) and sacrificed at the preclinical stages of the disease. Immunolabelled cryosections of Peyer's patches were analysed by confocal microscopy. Membrane prion protein expression was studied by flow cytometry. In Peyer's patches (PP), dissected at day one and day 105 after oral exposure to scrapie, we observed an increased population of DCs localised in the follicular-associated epithelium. On day 105, PrPSc was found in the follicles inside the PP of prion-infected mice. A subset of Peyer's patches DCs, which did not express cellular prion protein on their surface in non-infected mice conditions, was prion-positive in scrapie conditions. Within Peyer's patches oral scrapie exposure thus induced modifications of the homeostasis of DCs at the preclinical stages of the disease. These results give new arguments in favour of the implication of DCs in prion diseases.
Collapse
Affiliation(s)
- Gauthier Dorban
- Human Histology, Immunology Center, Faculty of Medicine, University of Liège, C.H.U., Avenue de l'hôpital, Tour de pharmacie +4, 4000, Liege, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mittelbach M, Pokits B, Müller H, Müller M, Riesner D. Risk assessment for prion protein reduction under the conditions of the biodiesel production process. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200600172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Bernd Pokits
- Institut für Chemie, Karl‐Franzens Universität Graz, Graz, Austria
| | - Henrik Müller
- Institut für Physikalische Biologie, Heinrich‐Heine‐Universität Düsseldorf, Düsseldorf, Germany
| | - Mario Müller
- Institut für Chemie, Karl‐Franzens Universität Graz, Graz, Austria
| | - Detlev Riesner
- Institut für Physikalische Biologie, Heinrich‐Heine‐Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Müller H, Stitz L, Riesner D. Risk assessment for fat derivatives in case of contamination with BSE. EUR J LIPID SCI TECH 2006. [DOI: 10.1002/ejlt.200600068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Müller H, Riesner D. Thermal degradation of prions in the presence of fats: Implication for oleochemical processes. EUR J LIPID SCI TECH 2005. [DOI: 10.1002/ejlt.200501189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Defaweux V, Dorban G, Demonceau C, Piret J, Jolois O, Thellin O, Thielen C, Heinen E, Antoine N. Interfaces between dendritic cells, other immune cells, and nerve fibres in mouse Peyer's patches: potential sites for neuroinvasion in prion diseases. Microsc Res Tech 2005; 66:1-9. [PMID: 15816033 DOI: 10.1002/jemt.20135] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, we examined where immune cells and nerve fibres are located in mouse Peyer's patches, with a view to identifying potential sites for neuroinvasion by prions. Special attention was paid to dendritic cells, viewed as candidate transporters of infectious prion. Double immunofluorescence labellings with anti-CD11c antibody and marker for other immune cells (B cells, T cells, follicular dendritic cells) were carried out and analysed by confocal microscopy on Peyer's patch cryosections. To reveal the extensive ganglionated networks of the myenteric and submucosal plexi and the sparse meshworks of nerve strands, we used antibodies directed against different neurofilament subunits or against glial fibrillary acidic protein. In the suprafollicular dome, dendritic cells connect, via their cytoplasmic extensions, enterocytes with M cells of the follicle-associated epithelium. They are also close to B and T cells. Nerve fibres are detected in the suprafollicular dome, notably in contact with dendritic cells. Similar connections between dendritic cells, T cells, and nerve fibres are seen in the interfollicular region. Germinal centres are not innervated; inside them dendritic cells establish contacts with follicular dendritic cells and with B cells. After immunolabelling of normal prion protein, dendritic cells of the suprafollicular dome are intensely positive labelled.
Collapse
Affiliation(s)
- Valérie Defaweux
- Institute of Human Histology, Immunology Center, Faculty of Medicine, University of Liège, B-4020 Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ford MJ, Burton LJ, Morris RJ, Hall SM. Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 2002; 113:177-92. [PMID: 12123696 DOI: 10.1016/s0306-4522(02)00155-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The level of expression of normal cellular prion protein, PrP(c) (cellular prion protein), controls both the rate and the route of neuroinvasive infection, from peripheral entry portal to the CNS. Paradoxically, an overview of the distribution of PrP(c) within tissues outside the CNS is lacking. We have used novel antibodies that recognise cellular prion protein in glutaraldehyde-fixed tissue (in order to optimise immunohistochemical labelling of this conformationally labile protein), in combination with in situ hybridisation, to examine the expression of PrP(c) in peripheral tissues of the adult mouse. We found that although prion protein is expressed in many tissues, it is expressed at high levels only in discrete subpopulations of cells. Prominent amongst these are elements of the "hardwired neuroimmune network" that integrate the body's immune defence and neuroendocrine systems under CNS control. These prion protein-expressing elements include small diameter afferent nerves in the skin and the lamina propria of the aerodigestive tract, sympathetic ganglia and nerves, antigen presenting and processing cells (both follicular and non-follicular dendritic cells) and sub-populations of lymphocytes particularly in skin, gut- and bronchus-associated lymphoid tissues. Prion protein is also expressed in the parasympathetic and enteric nervous systems, in the dispersed neuroendocrine system, and in peripheral nervous system axons and their associated Schwann cells. This selective expression of cellular prion protein provides a variety of alternative routes for the propagation and transport of prion infection entering from peripheral sites, either naturally (via the aerodigestive tract or abraded skin) or experimentally (by intraperitoneal injection) to the brain. Key regulatory cells that express prion protein, and in particular enteroendocrine cells in the mucosal wall of the gut, and dendritic cells that convey pathogens from epithelial layers to secondary lymphoid organs, may be particularly important in the transmission of infection in the periphery.
Collapse
Affiliation(s)
- M J Ford
- MRC Centre for Developmental Neurobiology, Hodgkin Building, King's College London Guy's Campus, London Bridge, London SE1 1UL, UK
| | | | | | | |
Collapse
|
11
|
Yokoyama T. The immunodetection of the abnormal isoform of prion protein. THE HISTOCHEMICAL JOURNAL 1999; 31:209-12. [PMID: 10447061 DOI: 10.1023/a:1003514021800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transmissible spongiform encephalopathies such as scrapie in sheep and goats, Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle, are neurodegenerative disorders. A proposed causative agent for these diseases is an infectious protein, the so called 'prion'. An abnormal isoform of prion protein (PrPSc) can be detected according to the prion propagation method used. As PrPSc appears to constitute the main, if not the only, infectious entity its detection for the diagnosis of prion diseases is important. Immunodetection methods for PrPSc analysis are popular tools for diagnosis and research studies. In this paper, a review of the present knowledge concerning immunodetection is presented and the enhancement of the immunoreactivity of antisera to mouse and hamster prion protein peptides using the techniques of Western blotting and immunohistochemistry is summarized.
Collapse
Affiliation(s)
- T Yokoyama
- National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Li G, Bolton DC. A novel hamster prion protein mRNA contains an extra exon: increased expression in scrapie. Brain Res 1997; 751:265-74. [PMID: 9099814 DOI: 10.1016/s0006-8993(96)01407-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prion protein (PrP) is the only known constituent of the agents (called prions) that cause fatal neurodegenerative diseases in animals and humans. PrP derives from a host protein encoded by a single copy gene having three known exons in mice, cattle and sheep but only two exons in hamsters and humans. We have identified and sequenced the missing exon from the hamster PrP gene. The new hamster PrP exon is 83% identical to mouse exon 2 and 76% identical to exon 2 from cattle and sheep. PrP mRNAs containing the new exon 2 (mRNA[1+2+3]) were expressed in the colliculi, frontal cortex and hippocampus of normal hamsters at approximately 30% to approximately 50% of the levels of the mRNA without exon 2 (mRNA[1+3]). Expression of PrP mRNA[1+2+3] was increased in the colliculi beginning 49 days after inoculation with scrapie prions and reached a level 2.5 times normal by day 77. Increased expression of PrP mRNA[1+2+3] in the colliculi correlated with expression of glial fibrillary acidic protein (GFAP) mRNA. Expression of GFAP and PrP mRNAs was not significantly increased in the hippocampus or the frontal cortex during the disease. Our study shows that exon 2 plays a role in regulating the cellular expression of hamster PrP and suggests that mRNA[1+2+3] may be preferentially expressed in hamster astrocytes.
Collapse
Affiliation(s)
- G Li
- IBR/CSI Center for Developmental Neuroscience and Developmental Disabilities, Staten Island, NY 10314, USA
| | | |
Collapse
|
13
|
Yokoyama T, Itohara S, Yuasa N. Detection of species specific epitopes of mouse and hamster prion proteins (PrPs) by anti-peptide antibodies. Arch Virol 1996; 141:763-9. [PMID: 8645112 DOI: 10.1007/bf01718334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Antisera to four synthetic peptides containing the substitutions between mouse and hamster prion proteins (PrPs) were produced in rabbits. The synthetic peptides used represent two mouse (Mo-I: residues 100-115 and Mo-V: residues 199-208) and two hamster PrP subregion sequences (Ha-I: 101-116 and Ha-V: 200-209). All antisera reacted strongly with homologous peptides but either not at all or poorly with heterologous peptides in enzymelinked immunosorbent assay (ELISA). Antisera to Mo-I and Mo-V recognized mouse PrPSc but not hamster PrpSc in western blot analysis (WB) and ELISA. Antisera to Ha-I contain antibodies specific to hamster PrPSc. The results indicate that these regions of PrPSc constitute species-specific epitopes. In contrast to these antisera, the antiserum to Ha-V recognized neither hamster nor mouse PrPSc. In this study, we identified mouse subregion-V as a species-specific epitope.
Collapse
Affiliation(s)
- T Yokoyama
- National Institute of Animal Health, Ibaraki, Japan
| | | | | |
Collapse
|
14
|
Darcel C. Reflections on scrapie and related disorders, with consideration of the possibility of a viral aetiology. Vet Res Commun 1995; 19:231-52. [PMID: 7571397 PMCID: PMC7088560 DOI: 10.1007/bf01839302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/1995] [Indexed: 01/26/2023]
Abstract
The transmissible spongiform encephalopathies of domesticated animals, scrapie in sheep and bovine spongiform encephalopathy (BSE), and transmissible mink encephalopathy are more than a scientific curiosity; under certain circumstances their impact on commercial activities can be calamitous. Knowledge of their causation and pathogenesis is still rudimentary, but many consider than an unconventional agent, the prion (a brain protein, PrP), that is not associated with nucleic acid is involved in both. Others believe that conventional viruses, which replicate by virtue of their nucleic acid-defined genes, are involved in the causation and progression of the encephalopathies but that technical problems have prevented their identification. Others postulate even more exotic causative agents. While this paper will particularly address the possibility of a viral aetiology for these diseases, it is also emphasized that our knowledge of the state of the immune system in animals with encephalopathy needs broadening. There are remarkable gaps in our knowledge of the histopathology of these diseases, particularly the nature of the characteristic vacuoles. Much further work is needed on the biochemical changes in the brain and the serum, particularly of the latter as it could lead to an additional means of recognizing clinical cases without waiting for the animal to die with subsequent examination of the brain for characteristic lesions and the presence of protease-K-resistant PrP.
Collapse
Affiliation(s)
- C Darcel
- Palliser Animal Health Laboratories Ltd., Lethbridge, Alberta, Canada
| |
Collapse
|
15
|
Schreuder BE. General aspects of transmissible spongiform encephalopathies and hypotheses about the agents. Vet Q 1993; 15:167-74. [PMID: 8122355 DOI: 10.1080/01652176.1993.9694399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article reviews the shared characteristics of the group of transmissible spongiform encephalopathies (SEs), both human and animal, and the major theories regarding the nature of the agents involved. All transmissible SE diseases share two striking characteristics: the degenerative changes including vacuolation in the central nervous system, and the assumption that these disorders are caused by unconventional, transmissible agents. This article examines the major hypotheses that have been postulated about these agents: the virus theory, the virino theory, the prion theory, and the recently proposed 'unified theory'. Both the virus and the virino hypotheses assume that a small nucleic acid is involved as part of the agent, while the prion hypothesis does not. The prion model obviates the need for a role of a nucleic acid in the propagation and replication of the agent, but does not explain the existence of strain variation. Nucleic acids in a micro-organism, as proposed in the virino and the virus hypotheses, could explain this variation. However, to date, no disease-specific nucleic acids have been identified. The 'unified' theory tries to reconcile the essentials of the virino and prion theories. The article also describes the discovery of the so-called prion protein (PrP), its isoforms, and the coding host gene, the PrP gene. It goes on to discuss the results of experiments with transgenic animals, indicating that mutations in the PrP gene may play a decisive role in the pathogenesis of at least some SEs. Finally, two different models, both involving the conversion of normal PrPC into PrPSc as part of the pathogenesis of SE, are discussed.
Collapse
Affiliation(s)
- B E Schreuder
- DLO-Central Veterinary Institute, Dept. of Pathophysiology and Epidemiology, Lelystad, The Netherlands
| |
Collapse
|