1
|
Borik S, Lyra S, Perlitz V, Keller M, Leonhardt S, Blazek V. On the spatial phase distribution of cutaneous low-frequency perfusion oscillations. Sci Rep 2022; 12:5997. [PMID: 35397640 PMCID: PMC8994784 DOI: 10.1038/s41598-022-09762-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Distributed cutaneous tissue blood volume oscillations contain information on autonomic nervous system (ANS) regulation of cardiorespiratory activity as well as dominating thermoregulation. ANS associated with low-frequency oscillations can be quantified in terms of frequencies, amplitudes, and phase shifts. The relative order between these faculties may be disturbed by conditions colloquially termed ‘stress’. Photoplethysmography imaging, an optical non-invasive diagnostic technique provides information on cutaneous tissue perfusion in the temporal and spatial domains. Using the cold pressure test (CPT) in thirteen healthy volunteers as a well-studied experimental intervention, we present a method for evaluating phase shifts in low- and intermediate frequency bands in forehead cutaneous perfusion mapping. Phase shift changes were analysed in low- and intermediate frequency ranges from 0.05 Hz to 0.18 Hz. We observed that time waveforms increasingly desynchronised in various areas of the scanned area throughout measurements. An increase of IM band phase desynchronization observed throughout measurements was comparable in experimental and control group, suggesting a time effect possibly due to overshooting the optimal relaxation duration. CPT triggered an increase in the number of points phase-shifted to the reference that was specific to the low frequency range for phase-shift thresholds defined as π/4, 3π/8, and π/2 rad, respectively. Phase shifts in forehead blood oscillations may infer changes of vascular tone due to activity of various neural systems. We present an innovative method for the phase shift analysis of cutaneous tissue perfusion that appears promising to assess ANS change processes related to physical or psychological stress. More comprehensive studies are needed to further investigate the reliability and physiological significance of findings.
Collapse
Affiliation(s)
- Stefan Borik
- Department of Electromagnetic and Biomedical Engineering, Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia.
| | - Simon Lyra
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Steffen Leonhardt
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Vladimir Blazek
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,The Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Beat-to-beat blood pressure variability: an early predictor of disease and cardiovascular risk. J Hypertens 2021; 39:830-845. [PMID: 33399302 DOI: 10.1097/hjh.0000000000002733] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Blood pressure (BP) varies on the long, short and very-short term. Owing to the hidden physiological and pathological information present in BP time-series, increasing interest has been given to the study of continuous, beat-to-beat BP variability (BPV) using invasive and noninvasive methods. Different linear and nonlinear parameters of variability are employed in the characterization of BP signals in health and disease. Although linear parameters of beat-to-beat BPV are mainly measures of dispersion, such as standard deviation (SD), nonlinear parameters of BPV quantify the degree of complexity/irregularity- using measures of entropy or self-similarity/correlation. In this review, we summarize the value of linear and nonlinear parameters in reflecting different information about the pathophysiology of changes in beat-to-beat BPV independent of or superior to mean BP. We then provide a comparison of the relative power of linear and nonlinear parameters of beat-to-beat BPV in detecting early and subtle differences in various states. The practical advantage and utility of beat-to-beat BPV monitoring support its incorporation into routine clinical practices.
Collapse
|
3
|
Raggam P, Bauernfeind G, Wriessnegger SC. NICA: A Novel Toolbox for Near-Infrared Spectroscopy Calculations and Analyses. Front Neuroinform 2020; 14:26. [PMID: 32523524 PMCID: PMC7261925 DOI: 10.3389/fninf.2020.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) measures the functional activity of the cerebral cortex. The concentration changes of oxygenated (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) can be detected and associated with activation of the cortex in the investigated area (neurovascular coupling). Recorded signals of hemodynamic responses may contain influences from physiological signals (systemic influences, physiological artifacts) which do not originate from the cerebral cortex activity. The physiological artifacts contain the blood pressure (BP), respiratory patterns, and the pulsation of the heart. In order to perform a comprehensive analysis of recorded fNIRS data, a proper correction of these physiological artifacts is necessary. This article introduces NICA - a novel toolbox for near-infrared spectroscopy calculations and analyses based on MATLAB. With NICA it is possible to process and visualize fNIRS data, including different signal processing methods for physiological artifact correction. The artifact correction methods used in this toolbox are common average reference (CAR), independent component analysis (ICA), and transfer function (TF) models. A practical example provides results from a study, where NICA was used for analyzing the measurement data, in order to demonstrate the signal processing steps and the physiological artifact correction. The toolbox was developed for fNIRS data recorded with the NIRScout 1624 measurement device and the corresponding recording software NIRStar.
Collapse
Affiliation(s)
- Philipp Raggam
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | | | - Selina C. Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
4
|
Ebinger F, Kruse M, Just U, Rating D. Cardiorespiratory Regulation in Migraine. Results in Children and Adolescents and Review of the Literature. Cephalalgia 2016; 26:295-309. [PMID: 16472336 DOI: 10.1111/j.1468-2982.2005.01039.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To investigate autonomic regulation in juvenile migraine we studied 70 children and adolescents with migraine during the headache-free period and 81 healthy controls by cardiorespiratory function tests. Heart rate variability was analysed with time and frequency domain indices during spontaneous breathing at rest and during metronomic breathing. Changes of heart rate and blood pressure were studied during tilt-table test, active standing, Valsalva manoeuvre and sustained handgrip. We found significant differences in metronomic breathing, tilt-table test and Valsalva manoeuvre. We interpret our findings and results reported in the literature as pointing to a restricted ability of the system to rest, which supports therapies intending to further this ability. In autonomic tests, hyperreactivity in juvenile migraineurs changes to hyporeactivity and passive coping in adults. This might be explained by disturbances of raphe nuclei and the periaqueductal grey. It corresponds to psychological findings in juvenile migraineurs reporting hypersensitivity and repressed aggression and claiming learned helplessness.
Collapse
Affiliation(s)
- F Ebinger
- Department of Child Neurology, University Paediatric Hospital, Heidelberg, Germany.
| | | | | | | |
Collapse
|
5
|
An alternative approach to approximate entropy threshold value (r) selection: application to heart rate variability and systolic blood pressure variability under postural challenge. Med Biol Eng Comput 2015; 54:723-32. [PMID: 26253284 DOI: 10.1007/s11517-015-1362-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 07/21/2015] [Indexed: 10/23/2022]
Abstract
This study presents an alternative approach to approximate entropy (ApEn) threshold value (r) selection. There are two limitations of traditional ApEn algorithm: (1) the occurrence of undefined conditional probability (CPu) where no template match is found and (2) use of a crisp tolerance (radius) threshold 'r'. To overcome these limitations, CPu is substituted with optimum bias setting ɛ opt which is found by varying ɛ from (1/N - m) to 1 in the increments of 0.05, where N is the length of the series and m is the embedding dimension. Furthermore, an alternative approach for selection of r based on binning the distance values obtained by template matching to calculate ApEnbin is presented. It is observed that ApEnmax, ApEnchon and ApEnbin converge for ɛ opt = 0.6 in 50 realizations (n = 50) of random number series of N = 300. Similar analysis suggests ɛ opt = 0.65 and ɛ opt = 0.45 for 50 realizations each of fractional Brownian motion and MIX(P) series (Lu et al. in J Clin Monit Comput 22(1):23-29, 2008). ɛ opt = 0.5 is suggested for heart rate variability (HRV) and systolic blood pressure variability (SBPV) signals obtained from 50 young healthy subjects under supine and upright position. It is observed that (1) ApEnbin of HRV is lower than SBPV, (2) ApEnbin of HRV increases from supine to upright due to vagal inhibition and (3) ApEnbin of BPV decreases from supine to upright due to sympathetic activation. Moreover, merit of ApEnbin is that it provides an alternative to the cumbersome ApEnmax procedure.
Collapse
|
6
|
Porta A, Bari V, Marchi A, De Maria B, Cysarz D, Van Leeuwen P, Takahashi ACM, Catai AM, Gnecchi-Ruscone T. Complexity analyses show two distinct types of nonlinear dynamics in short heart period variability recordings. Front Physiol 2015; 6:71. [PMID: 25806002 PMCID: PMC4354335 DOI: 10.3389/fphys.2015.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/20/2015] [Indexed: 11/30/2022] Open
Abstract
Two diverse complexity metrics quantifying time irreversibility and local prediction, in connection with a surrogate data approach, were utilized to detect nonlinear dynamics in short heart period (HP) variability series recorded in fetuses, as a function of the gestational period, and in healthy humans, as a function of the magnitude of the orthostatic challenge. The metrics indicated the presence of two distinct types of nonlinear HP dynamics characterized by diverse ranges of time scales. These findings stress the need to render more specific the analysis of nonlinear components of HP dynamics by accounting for different temporal scales.
Collapse
Affiliation(s)
- Alberto Porta
- Laboratory of Complex System Modeling, Department of Biomedical Sciences for Health, University of Milan Milan, Italy ; IRCCS Galeazzi Orthopedic Institute Milan, Italy
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato Milan, Italy
| | - Andrea Marchi
- Department of Anesthesia and Intensive Care Unit, Humanitas Clinical and Research Center Rozzano, Italy
| | | | - Dirk Cysarz
- Integrated Curriculum for Anthroposophic Medicine, University of Witten/Herdecke Witten, Germany ; Department of Medicine, Institute for Integrative Medicine, University of Witten/Herdecke Herdecke, Germany
| | - Peter Van Leeuwen
- Department of Biomagnetism, Grönemeyer Institute for Microtherapy, University of Witten/Herdecke Bochum, Germany
| | - Anielle C M Takahashi
- Research Laboratory in Health Elderly, Department of Physiotherapy, Federal University of São Carlos São Carlos, Brazil ; Cardiovascular Physiotherapy Laboratory, Department of Physiotherapy, Nucleus of Research in Physical Exercise, Federal University of São Carlos São Carlos, Brazil
| | - Aparecida M Catai
- Cardiovascular Physiotherapy Laboratory, Department of Physiotherapy, Nucleus of Research in Physical Exercise, Federal University of São Carlos São Carlos, Brazil
| | | |
Collapse
|
7
|
Bauernfeind G, Wriessnegger SC, Daly I, Müller-Putz GR. Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals. J Neural Eng 2014; 11:056010. [PMID: 25111822 DOI: 10.1088/1741-2560/11/5/056010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain-computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). APPROACH We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. MAIN RESULTS All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. SIGNIFICANCE The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Collapse
Affiliation(s)
- G Bauernfeind
- Institute for Knowledge Discovery, Graz University of Technology, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
8
|
Porta A, Faes L, Bari V, Marchi A, Bassani T, Nollo G, Perseguini NM, Milan J, Minatel V, Borghi-Silva A, Takahashi ACM, Catai AM. Effect of age on complexity and causality of the cardiovascular control: comparison between model-based and model-free approaches. PLoS One 2014; 9:e89463. [PMID: 24586796 PMCID: PMC3933610 DOI: 10.1371/journal.pone.0089463] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022] Open
Abstract
The proposed approach evaluates complexity of the cardiovascular control and causality among cardiovascular regulatory mechanisms from spontaneous variability of heart period (HP), systolic arterial pressure (SAP) and respiration (RESP). It relies on construction of a multivariate embedding space, optimization of the embedding dimension and a procedure allowing the selection of the components most suitable to form the multivariate embedding space. Moreover, it allows the comparison between linear model-based (MB) and nonlinear model-free (MF) techniques and between MF approaches exploiting local predictability (LP) and conditional entropy (CE). The framework was applied to study age-related modifications of complexity and causality in healthy humans in supine resting (REST) and during standing (STAND). We found that: 1) MF approaches are more efficient than the MB method when nonlinear components are present, while the reverse situation holds in presence of high dimensional embedding spaces; 2) the CE method is the least powerful in detecting age-related trends; 3) the association of HP complexity on age suggests an impairment of cardiac regulation and response to STAND; 4) the relation of SAP complexity on age indicates a gradual increase of sympathetic activity and a reduced responsiveness of vasomotor control to STAND; 5) the association from SAP to HP on age during STAND reveals a progressive inefficiency of baroreflex; 6) the reduced connection from HP to SAP with age might be linked to the progressive exploitation of Frank-Starling mechanism at REST and to the progressive increase of peripheral resistances during STAND; 7) at REST the diminished association from RESP to HP with age suggests a vagal withdrawal and a gradual uncoupling between respiratory activity and heart; 8) the weakened connection from RESP to SAP with age might be related to the progressive increase of left ventricular thickness and vascular stiffness and to the gradual decrease of respiratory sinus arrhythmia.
Collapse
Affiliation(s)
- Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Galeazzi Orthopedic Institute, Milan, Italy
- * E-mail:
| | - Luca Faes
- Department of Physics and BIOtech, University of Trento, Trento, Italy
| | - Vlasta Bari
- Gruppo Ospedaliero San Donato Foundation, Milan, Italy
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Andrea Marchi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Tito Bassani
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giandomenico Nollo
- BIOtech, Department of Industrial Engineering, University of Trento, Trento, Italy
- IRCS PAT-FBK, Trento, Italy
| | - Natália Maria Perseguini
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| | - Juliana Milan
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| | - Vinícius Minatel
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| | - Audrey Borghi-Silva
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| | - Anielle C. M. Takahashi
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| | - Aparecida M. Catai
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, São Paulo State, Brazil
| |
Collapse
|
9
|
Porta A, Castiglioni P, Di Rienzo M, Bassani T, Bari V, Faes L, Nollo G, Cividjan A, Quintin L. Cardiovascular control and time domain Granger causality: insights from selective autonomic blockade. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120161. [PMID: 23858489 DOI: 10.1098/rsta.2012.0161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We studied causal relations among heart period (HP), systolic arterial pressure (SAP) and respiration (R) according to the definition of Granger causality in the time domain. Autonomic pharmacological challenges were used to alter the complexity of cardiovascular control. Atropine (AT), propranolol and clonidine (CL) were administered to block muscarinic receptors, β-adrenergic receptors and centrally sympathetic outflow, respectively. We found that: (i) at baseline, HP and SAP interacted in a closed loop with a dominant causal direction from HP to SAP; (ii) pharmacological blockades did not alter the bidirectional closed-loop interactions between HP and SAP, but AT reduced the dominance of the causal direction from HP to SAP; (iii) at baseline, bidirectional interactions between HP and R were frequently found; (iv) the closed-loop relation between HP and R was unmodified by the administration of drugs; (v) at baseline, unidirectional interactions from R to SAP were often found; and (vi) while AT induced frequently an uncoupling between R and SAP, CL favoured bidirectional interactions. These results prove that time domain measures of Granger causality can contribute to the description of cardiovascular control by suggesting the temporal direction of the interactions and by separating different causality schemes (e.g. closed loop versus unidirectional relations).
Collapse
Affiliation(s)
- Alberto Porta
- Department of Biomedical Sciences for Health, Galeazzi Orthopaedic Institute, University of Milan, 20161 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Porta A, Castiglioni P, Rienzo MD, Bari V, Bassani T, Marchi A, Takahashi ACM, Tobaldini E, Montano N, Catai AM, Barbic F, Furlan R, Cividjian A, Quintin L. Short-term complexity indexes of heart period and systolic arterial pressure variabilities provide complementary information. J Appl Physiol (1985) 2012; 113:1810-20. [DOI: 10.1152/japplphysiol.00755.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unclear whether the complexity of the variability of the systolic arterial pressure (SAP) provides complementary information to that of the heart period (HP). The complexity of HP and SAP variabilities was assessed from short beat-to-beat recordings (i.e., 256 cardiac beats). The evaluation was made during a pharmacological protocol that induced vagal blockade with atropine or a sympathetic blockade (beta-adrenergic blockade with propranolol or central sympathetic blockade with clonidine) alone or in combination, during a graded head-up tilt, and in patients with Parkinson's disease (PD) without orthostatic hypotension undergoing orthostatic challenge. Complexity was quantified according to the mean square prediction error (MSPE) derived from univariate autoregressive (AR) and multivariate AR (MAR) models. We found that: 1) MSPEMAR did not provide additional information to that of MSPEAR; 2) SAP variability was less complex than that of HP; 3) because HP complexity was reduced by either vagal blockade or vagal withdrawal induced by head-up tilt and was unaffected by beta-adrenergic blockade, HP was under vagal control; 4) because SAP complexity was increased by central sympathetic blockade and was unmodified by either vagal blockade or vagal withdrawal induced by head-up tilt, SAP was under sympathetic control; 5) SAP complexity was increased in patients with PD; and 6) during orthostatic challenge, the complexity of both HP and SAP variabilities in patients with PD remained high, thus indicating both vagal and sympathetic impairments. Complexity indexes derived from short HP and SAP beat-to-beat series provide complementary information and are helpful in detecting early autonomic dysfunction in patients with PD well before circulatory symptoms become noticeable.
Collapse
Affiliation(s)
- A. Porta
- Department of Biomedical Sciences for Health, Galeazzi Orthopedic Institute, University of Milan, Milan, Italy
| | | | | | - V. Bari
- Gruppo Ospedaliero San Donato Foundation, Milan, Italy
- Department of Bioengineering, Politecnico di Milano, Milan, Italy
| | - T. Bassani
- Department of Biomedical Sciences for Health, Galeazzi Orthopedic Institute, University of Milan, Milan, Italy
| | - A. Marchi
- Department of Emergency, L. Sacco Hospital, Milan, Italy
| | - A. C. M. Takahashi
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, Brazil
| | - E. Tobaldini
- Department of Biomedical and Clinical Sciences, Internal Medicine II, L. Sacco Hospital, University of Milan, Milan, Italy
| | - N. Montano
- Department of Biomedical and Clinical Sciences, Internal Medicine II, L. Sacco Hospital, University of Milan, Milan, Italy
| | - A. M. Catai
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, Brazil
| | - F. Barbic
- Medical Clinics, Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | - R. Furlan
- Department of Medical Biotechnologies and Translation Medicine, Medical Clinics, Istituto Clinico Humanitas, University of Milan, Rozzano, Milan, Italy; and
| | - A. Cividjian
- Physiology (EA 4612: Neurocardiology), University of Lyon, Lyon, France
| | - L. Quintin
- Physiology (EA 4612: Neurocardiology), University of Lyon, Lyon, France
| |
Collapse
|
11
|
Faes L, Nollo G, Chon KH. Assessment of Granger causality by nonlinear model identification: application to short-term cardiovascular variability. Ann Biomed Eng 2008; 36:381-95. [PMID: 18228143 DOI: 10.1007/s10439-008-9441-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 01/15/2008] [Indexed: 11/30/2022]
Abstract
A method for assessing Granger causal relationships in bivariate time series, based on nonlinear autoregressive (NAR) and nonlinear autoregressive exogenous (NARX) models is presented. The method evaluates bilateral interactions between two time series by quantifying the predictability improvement (PI) of the output time series when the dynamics associated with the input time series are included, i.e., moving from NAR to NARX prediction. The NARX model identification was performed by the optimal parameter search (OPS) algorithm, and its results were compared to the least-squares method to determine the most appropriate method to be used for experimental data. The statistical significance of the PI was assessed using a surrogate data technique. The proposed method was tested with simulation examples involving short realizations of linear stochastic processes and nonlinear deterministic signals in which either unidirectional or bidirectional coupling and varying strengths of interactions were imposed. It was found that the OPS-based NARX model was accurate and sensitive in detecting imposed Granger causality conditions. In addition, the OPS-based NARX model was more accurate than the least squares method. Application to the systolic blood pressure and heart rate variability signals demonstrated the feasibility of the method. In particular, we found a bilateral causal relationship between the two signals as evidenced by the significant reduction in the PI values with the NARX model prediction compared to the NAR model prediction, which was also confirmed by the surrogate data analysis. Furthermore, we found significant reduction in the complexity of the dynamics of the two causal pathways of the two signals as the body position was changed from the supine to upright. The proposed is a general method, thus, it can be applied to a wide variety of physiological signals to better understand causality and coupling that may be different between normal and diseased conditions.
Collapse
Affiliation(s)
- Luca Faes
- Lab. Biosegnali, Dipartimento di Fisica, Università di Trento, via Sommarive 14, Povo, Trento, 38050, Italy,
| | | | | |
Collapse
|
12
|
Perlitz V, Lambertz M, Cotuk B, Grebe R, Vandenhouten R, Flatten G, Petzold ER, Schmid-Schönbein H, Langhorst P. Cardiovascular rhythms in the 0.15-Hz band: common origin of identical phenomena in man and dog in the reticular formation of the brain stem? Pflugers Arch 2004; 448:579-91. [PMID: 15138824 DOI: 10.1007/s00424-004-1291-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 04/06/2004] [Indexed: 11/25/2022]
Abstract
Selected examples from experiments in humans and dogs with time series of reticular neurons, respiration, arterial blood pressure and cutaneous forehead blood content fluctuations were analysed using multiscaled time-frequency distribution, post-event-scan and pointwise transinformation. We found in both experiments a "0.15-Hz rhythm" exhibiting periods of spindle waves (increasing and decreasing amplitudes), phase synchronized with respiration at 1:2 and 1:1 integer number ratios. At times of wave-epochs and n:m phase synchronization, the 0.15-Hz rhythm appeared in heart rate and arterial blood pressure. As phase synchronization of the 0.15-Hz rhythm with respiration was established at a 1:1 integer number ratio, all cardiovascular-respiratory oscillations were synchronized at 0.15 Hz. Analysis of a canine experiment supplied evidence that the emergence of the 0.15-Hz rhythm and n:m phase synchronization appears to result from a decline in the level of the general activity of the organism associated with a decline in the level of activity of reticular neurons in the lower brainstem network. These findings corroborate the notion of the 0.15-Hz rhythm as a marker of the "trophotropic mode of operation" first introduced by W.R. Hess.
Collapse
Affiliation(s)
- Volker Perlitz
- Psychophysiologisches Labor, Klinik für Psychosomatik und Psychotherapeutische Medizin, Medizinische Fakultät der Rheinisch-Westfälisch-Technischen Hochschule Aachen, 52057 Aachen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Porta A, Montano N, Pagani M, Malliani A, Baselli G, Somers VK, van de Borne P. Non-invasive model-based estimation of the sinus node dynamic properties from spontaneous cardiovascular variability series. Med Biol Eng Comput 2003; 41:52-61. [PMID: 12572748 DOI: 10.1007/bf02343539] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A non-invasive model-based approach to the estimation of sinus node dynamic properties is proposed. The model exploits the spontaneous beat-to-beat variability of heart period and systolic arterial pressure and the sampled respiration, thus surrogating the information from direct measures of neural activity. The residual heart period variability not related to baroreflex, to direct effects of respiration and to low frequency influences independent of baroreflex, is interpreted as the effect of the dynamic properties of the sinus node and modelled as a regression of the RR interval over its previous value. Therefore the sinus node transfer function is modelled by means of a filter with a real pole z = mu (and a zero in the origin). It was found that: first, in young healthy subjects the nodal tissue responded as a low-pass filter with mu = 0.76 +/- 0.12 (mean +/- SD); secondly, ageing did not significantly modify either its shape or gain at 0 Hz; thirdly, in heart transplant recipients, the dynamic transduction properties were lost (all-pass filter, p = 0.06 +/- 0.16, p < 0.001); fourthly, low-dose atropine left the sinus node dynamic properties unmodified; fifthly, high-dose atropine affected the dynamic transduction properties by increasing the gain at 0 Hz and rendering steeper its roll-off (the percent increase of mu with respect to baseline was 18.3 +/- 22.3, p < 0.05).
Collapse
Affiliation(s)
- A Porta
- Dipartimento di Scienze Precliniche, LITA di Vialba, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Porta A, Baselli G, Guzzetti S, Pagani M, Malliani A, Cerutti S. Prediction of short cardiovascular variability signals based on conditional distribution. IEEE Trans Biomed Eng 2000; 47:1555-64. [PMID: 11125590 DOI: 10.1109/10.887936] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new approach measuring the predictability of a process is proposed. The predictor is defined as the median of the distribution conditioned by a sequence of L - 1 previous samples (i.e., a pattern). A function referred to as the corrected mean squared predictor error is defined to prevent the perfect adequacy to the data (i.e., the decrease to zero of the prediction error), thus avoiding to divide the whole set of data in learning and test sets. This function exhibits a minimum and this minimum is taken as a measure of predictability of the series. The use of the minimization procedure avoids to fix a priori the pattern length L. This approach permits one a reliable measure of predictability on short data sequences (around 300 samples). Moreover, this method, in connection with a surrogate data approach, is useful to detect nonlinear dynamics. The analysis indicates that, in simulated and real data, predictability and nonlinearity measures provide different information. The application of this approach to the analysis of cardiovascular variability series of the heart period (RR interval) and systolic arterial pressure (SAP) shows: 1) SAP series is more predictable than RR interval series; 2) predictability of the RR interval series is larger during tilt, during controlled respiration at 10 breaths/min (bpm) and after high-dose administration of atropine; 3) SAP series is dominated by linear correlation; 4) RR interval series exhibits nonlinear dynamics during controlled respiration at 10 bpm and after low-dose administration of atropine, while it is linear during sympathetic activation produced by tilt and after peripheral parasympathetic blockade caused by high-dose administration of atropine.
Collapse
Affiliation(s)
- A Porta
- Dipartimento di Scienze Precliniche, Università degli Studi di Milano, LITA di Vialba, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Vandenhouten R, Lambertz M, Langhorst P, Grebe R. Nonstationary time-series analysis applied to investigation of brainstem system dynamics. IEEE Trans Biomed Eng 2000; 47:729-37. [PMID: 10833847 DOI: 10.1109/10.844220] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous investigations of the dynamic organization of the lower brainstem and its relation to peripheral and other central nervous systems were predominantly performed by linear methods. These are based on time-averaging algorithms, which merely can be applied to stationary signal intervals. Thus, the current concept of the common brainstem system (CBS) in the reticular formation (RF) of the lower brainstem and basic types of its functional organization have been developed. Here, we present experiments where neuronal activities of the RF and the nucleus tractus solitarii (NTS, first relay station of baroreceptor afferents) were recorded together with related parameters of electroencephalogram (EEG), respiration, and cardiovascular system. The RF neurons are part of the CBS, which participates in regulation and coordination of cardiovascular, respiratory, and motor systems, and vigilance. The physiological time series, thus acquired, yield information about the internal dynamic coordination of the participating regulation processes. The major problem in evaluating these data is the nonlinearity and nonstationarity of the signals. We used a set of especially designed time resolving methods to evaluate nonlinear dynamic couplings in the interaction between CBS neurons and cardiovascular signals, respiration and the EEG, and between NTS neurons (influenced by baroreceptor afferents) and CBS neurons.
Collapse
|
16
|
Porta A, Guzzetti S, Montano N, Pagani M, Somers V, Malliani A, Baselli G, Cerutti S. Information domain analysis of cardiovascular variability signals: evaluation of regularity, synchronisation and co-ordination. Med Biol Eng Comput 2000; 38:180-8. [PMID: 10829411 DOI: 10.1007/bf02344774] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A unifying general approach to measure regularity, synchronisation and co-ordination is proposed. This approach is based on conditional entropy and is specifically designed to deal with a small amount of data (a few hundred samples). Quantitative and reliable indexes of regularity, synchronisation and co-ordination (ranging from 0 to 1) are derived in a domain (i.e. the information domain) different from time and frequency domains. The method is applied to evaluate regularity, synchronisation and co-ordination among cardiovascular beat-to-beat variability signals during sympathetic activation induced by head-up tilt (T), during the perturbing action produced by controlled respiration at 10, 15 and 20 breaths/min (CR10, CR15 and CR20), and after peripheral muscarinic blockade provoked by the administration of low and high doses of atropine (LD and HD). It is found that: (1) regularity of the RR interval series is around 0.209; (2) this increases during T, CR10 and HD; (3) the systolic arterial pressure (SAP) series is more regular (0.406) and its regularity is not affected by the specified experimental conditions; (4) the muscle sympathetic (MS) series is a complex signal (0.093) and its regularity is not influenced by HD and LD; (5) the RR interval and SAP series are significantly, though weakly, synchronised (0.093) and their coupling increases during T, CR10 and CR15; (6) the RR interval and respiration are coupled (0.152) and their coupling increases during CR10; (7) SAP and respiration are significantly synchronised (0.108) and synchronisation increases during CR10; (8) MS and respiration are uncoupled and become coupled (0.119) after HD; (9) the RR interval, SAP and respiration are significantly co-ordinated (0.118) and co-ordination increases during CR10 and CR15; (10) during HD the co-ordination among SAP, MS and the respiratory signal is larger than that among the RR interval, SAP, MS and the respiratory signal, thus indicating that the RR interval contributes towards reducing co-ordination.
Collapse
Affiliation(s)
- A Porta
- Dipartimento di Scienze Precliniche, Università' degli Studi di Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lambertz M, Vandenhouten R, Grebe R, Langhorst P. Phase transitions in the common brainstem and related systems investigated by nonstationary time series analysis. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 78:141-57. [PMID: 10789694 DOI: 10.1016/s0165-1838(99)00072-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuronal activities of the reticular formation (RF) of the lower brainstem and the nucleus tractus solitarii (NTS, first relay station of baroreceptor afferents) were recorded together in the anesthized dog with related parameters of EEG, respiration and cardiovascular system. The RF neurons are part of the common brainstem system (CBS) which participates in regulation and coordination of cardiovascular, respiratory, somatomotor systems, and vigilance. Multiple time series of these physiological subsystems yield useful information about internal dynamic coordination of the organism. Essential problems are nonlinearity and instationarity of the signals, due to the dynamic complexity of the systems. Several time-resolving methods are presented to describe nonlinear dynamic couplings in the time course, particularly during phase transitions. The methods are applied to the recorded signals representing the complex couplings of the physiological subsystems. Phase transitions in these systems are detected by recurrence plots of the instationary signals. The pointwise transinformation and the pointwise conditional coupling divergence are measures of the mutual interaction of the subsystems in the state space. If the signals show marked rhythms, instantaneous frequencies and their shiftings are demonstrated by time frequency distributions, and instantaneous phase differences show couplings of oscillating subsystems. Transient signal components are reconstructed by wavelet packet time selective transient reconstruction. These methods are useful means for analyzing coupling characteristics of the complex physiological system, and detailed analyses of internal dynamic coordination of subsystems become possible. During phase transitions of the functional organization (a) the rhythms of the central neuronal activities and the peripheral systems are altered, (b) changes in the coupling between CBS neurons and cardiovascular signals, respiration and the EEG, and (c) between NTS neurons (influenced by baroreceptor afferents) and CBS neurons occur, and (d) the processing of baroreceptor input at the NTS neurons changes. The results of this complex analysis, which could not be done formerly in this manner, confirm and complete former investigations on the dynamic organization of the CBS with its changing relations to peripheral and other central nervous subsystems.
Collapse
Affiliation(s)
- M Lambertz
- Institut für Physiologie, Freie Universität Berlin, Germany.
| | | | | | | |
Collapse
|
18
|
Lambertz M, Langhorst P. Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1998; 68:58-77. [PMID: 9531446 DOI: 10.1016/s0165-1838(97)00126-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several neurons from different regions of the brainstem of anesthetized dogs were simultaneously recorded, together with various parameters of the cardiovascular system, respiration, efferent sympathetic neural activities and cortical activity. Often rhythmic changes of activity in the range 0.05-0.5 Hz could be observed in the simultaneously recorded signals. The rhythms were analysed in time domain and by power spectra and their changes depicted over the time. The most striking rhythms between 0.05 Hz and 0.5 Hz are the respiratory rhythm and those rhythms that originate in reticular neurons of the common brainstem system as well as their respective harmonics, i.e. the ranges around the integer multiple frequencies of these basic rhythms. The observed oscillations can vanish and reappear at times. Frequencies of basic oscillations and harmonics and their amplitudes are subject to distinct slow modulations. These modulations can have irregular as well as regular courses. The different rhythms can appear separately or simultaneously in the single signals. The most important phenomenon to be observed is that the rhythms mutually influence their frequencies, which follows the rules of 'relative coordination' as described by E. v. Holst. Such changes of rhythmic activities generally also concern the ranges of harmonics of the basic rhythms. Rhythmic influences on peripheral functional systems, e.g. the cardiovascular system, are most distinct at times when the different rhythms overlap in their frequency ranges. This holds not only for the ranges of basic frequencies, but also for the ranges of their harmonics. Further it was found that rhythms with the same basic frequencies may not only appear simultaneously, but also at various times in the different functional systems. The temporal course of changes of these rhythms, their interactions and their influence on the processing of cardiac rhythmic neuronal discharge patterns is demonstrated. The meaning of the mutually influencing rhythms for the functional organization of central nervous structures is discussed.
Collapse
Affiliation(s)
- M Lambertz
- Institut für Physiologie, Freie Universität Berlin, Germany
| | | |
Collapse
|
19
|
Schmid-Schönbein H, Ziege S, Scheffler A, Blazek V, Grebe R. Attractors and quasi-attractors in the cutaneous perfusion in human subjects and patients: "chaotic" or adaptive behaviour? JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 57:136-40. [PMID: 8964937 DOI: 10.1016/0165-1838(95)00084-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The causes of the aperiodic fluctuations in the perfusion of the skin (volar hand, measured by the Laser-Doppler (LD) technique) of healthy human subjects were studied were studied by simultaneous recording of the fluctuations of local blood content (reflectiophotoplethysmography (rPPG)) and those in the skin of the glabella. Various thermoregulatory situations were provoked by exposing 12 subjects to 18, 21, 24 and 27 degrees C ambient temperature; in addition, the hands were placed at, below and above heart level. In mentally relaxed subjects (evidenced by a stable approx. 0.015-Hz rhythm in the glabellar rPPG signal), there was perfect temporal correlation between aperiodic LDA and rPPG signal under all thermoregulatory conditions. Clearly identifiable episodes of retardation associated with skin bleaching, asymmetrical shape of LDA and rPPG signals were taken as indicators of episodic sympathetic skin constrictor (SSC) activity. In synergetic terms, the modulated SSC activity operates as transient "quasi-attractor'. A notable exception occurred: when the hand was placed below heart at 27 degrees C ambient temperature, a sinusoidal periodic fluctuation (approx. 0.03 Hz) in the LDA evolved. These were not seen the rPPG signal, i.e., coherence between LDA and rPPG dynamics was lost). Lack of coherency between LDA-rPPG, also observed in patients with autonomic neuropathy and decompensated forms of peripheral arterial disease, suggesting predominance of spontaneously oscillating myogenic vasomotion after removal of temporally variable SSC drive. Stable vasomotion is regarded as a synergetically stereotyped reaction rather than as "well-ordered' stable attractor mode of operation.
Collapse
Affiliation(s)
- H Schmid-Schönbein
- Institut für Physiologie, Rheinisch-Westfälische Technischen Hochschule Aachen, Germany
| | | | | | | | | |
Collapse
|
20
|
Abstract
H.-P. Koepchen's presence at this symposium on cardiocirculatory function during sleep would have given us an inspiring impetus. His death has meant a severe loss for all of us. Koepchen's integrated view on cardiorespiratory control and rhythmicity has been the content of his late work. His considerations as documented in various papers are used for this contribution. They are based on earlier experimental studies of spontaneous coordinations of rhythmic activities in anaesthetized dogs, conscious men, and microelectrode recordings and local cooling experiments in the brain stem of anaesthetized dogs and cats, which he had worked on together with his students.
Collapse
Affiliation(s)
- ME Schläfke
- Department of Applied Physiology, Ruhr-University Bochum, Germany
| |
Collapse
|
21
|
Zwiener U, Lüthke B, Bauer R, Hoyer D, Richter A, Wagner H. Heart rate fluctuations of lower frequencies than the respiratoryrhythm but caused by it. Pflugers Arch 1995; 429:455-61. [PMID: 7617434 DOI: 10.1007/bf00704149] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In conscious adult rabbits, "classical" respiratory sinus arrhythmia does not occur because the respiratory frequency (RF) always exceeds half the heart rate (HR). However, slow HR fluctuations, not synchronous with the respiratory rhythm but affected by it, occur systematically. We have shown that these can be calculated by using aliasing rules. During general anaesthesia, when the RF decreases so that respiratory frequency is less than half the heart rate, classical respiratory sinus arrhythmia occurs and can be greatly reduced by vagal blockade. The slow HR fluctuations which are not synchronous with the respiratory rhythms, but are affected by it are mainly vagally mediated, because vagal blockade virtually eliminates them.
Collapse
Affiliation(s)
- U Zwiener
- Institut für Pathologische Physiologie, Klinikum der Friedrich-Schiller-Universität, Jena, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Synergetics of Blood Movement Through Microvascular Networks: Causes and Consequences of Nonlinear Pressure-Flow Relationships. ACTA ACUST UNITED AC 1993. [DOI: 10.1007/978-3-642-51030-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|