1
|
Jia X, Gao X, Zhang S, Inman JT, Hong Y, Singh A, Patel S, Wang MD. Torsion is a Dynamic Regulator of DNA Replication Stalling and Reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618227. [PMID: 39464009 PMCID: PMC11507786 DOI: 10.1101/2024.10.14.618227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The inherent helical structure of DNA dictates that a replisome must rotate relative to DNA during replication, presenting inevitable topological challenges to replication. However, little is known about how the replisome progresses against torsional stress. Here, we developed a label-free, high-resolution, real-time assay to monitor replisome movement under torsion. We visualized the replisome rotation of DNA and determined how the replisome slows down under torsion. We found that while helicase or DNA polymerase (DNAP) individually is a weak torsional motor, the replisome composed of both enzymes is the most powerful DNA torsional motor studied to date. It generates ~ 22 pN·nm of torque before stalling, twice the stall torque of E. coli RNA polymerase. Upon replisome stalling, the specific interaction between helicase and DNAP stabilizes the fork junction; without it, the fork can regress hundreds of base pairs. We also discovered that prolonged torsion-induced stalling inactivates the replisome. Surprisingly, DNAP exchange, mediated by the helicase, is highly effective in facilitating replication restart, but only if excess DNAP is present during stalling. Thus, helicase and DNA polymerase work synergistically as a powerful torsional motor, and their dynamic and fluid interactions are crucial for maintaining fork integrity under torsional stress. This work demonstrates that torsion is a strong regulator of DNA replication stalling and reactivation.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Shuming Zhang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T. Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Anupam Singh
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Smita Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Michelle D. Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Hong Y, Park SH, Wang H, Wang MD. Geometry of Braided DNA Dictates Supercoiling Partition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617221. [PMID: 39416030 PMCID: PMC11482784 DOI: 10.1101/2024.10.08.617221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
During DNA replication, the replisome must rotate relative to the DNA substrate, generating supercoiling that must be partitioned in front of or behind the replisome. Supercoiling partitioned behind the replisome may intertwine (or braid) daughter DNA molecules and restrict chromosome segregation. Supercoiling partitioning and torsional resistance at the replisome should depend on the geometry of the two daughter DNA molecules, determined by their end separations. However, experimental investigation of DNA braiding under well-defined DNA geometry has proven challenging. Here, we present methods to engineer braiding substrates of defined geometry, from minimal to significant end separations. We then directly measured the torque required to braid these substrates using an angular optical trap (AOT) and found that the torque required to initiate the braiding during the first 0.5 turn critically depends on the end separation. Once braiding started, we found that the subsequent effective twist persistence length of DNA braiding is about 20-30 nm, insensitive to the end separations. Our work highlights the crucial role of braiding geometry in dictating supercoiling partitioning and torque build-up during replication. It suggests that dynamic modulation of end separation on the daughter DNA molecules could serve as a mechanism to regulate replication progression in vivo.
Collapse
Affiliation(s)
- Yifeng Hong
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Seong ha Park
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Hanjie Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Royzenblat SK, Freddolino L. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. EcoSal Plus 2024:eesp00012022. [PMID: 38864557 DOI: 10.1128/ecosalplus.esp-0001-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Escherichia coli has been a vital model organism for studying chromosomal structure, thanks, in part, to its small and circular genome (4.6 million base pairs) and well-characterized biochemical pathways. Over the last several decades, we have made considerable progress in understanding the intricacies of the structure and subsequent function of the E. coli nucleoid. At the smallest scale, DNA, with no physical constraints, takes on a shape reminiscent of a randomly twisted cable, forming mostly random coils but partly affected by its stiffness. This ball-of-spaghetti-like shape forms a structure several times too large to fit into the cell. Once the physiological constraints of the cell are added, the DNA takes on overtwisted (negatively supercoiled) structures, which are shaped by an intricate interplay of many proteins carrying out essential biological processes. At shorter length scales (up to about 1 kb), nucleoid-associated proteins organize and condense the chromosome by inducing loops, bends, and forming bridges. Zooming out further and including cellular processes, topological domains are formed, which are flanked by supercoiling barriers. At the megabase-scale both large, highly self-interacting regions (macrodomains) and strong contacts between distant but co-regulated genes have been observed. At the largest scale, the nucleoid forms a helical ellipsoid. In this review, we will explore the history and recent advances that pave the way for a better understanding of E. coli chromosome organization and structure, discussing the cellular processes that drive changes in DNA shape, and what contributes to compaction and formation of dynamic structures, and in turn how bacterial chromatin affects key processes such as transcription and replication.
Collapse
Affiliation(s)
- Sonya K Royzenblat
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lydia Freddolino
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Campos LV, Van Ravenstein SX, Vontalge EJ, Greer BH, Heintzman DR, Kavlashvili T, McDonald WH, Rose KL, Eichman BF, Dewar JM. RTEL1 and MCM10 overcome topological stress during vertebrate replication termination. Cell Rep 2023; 42:112109. [PMID: 36807139 PMCID: PMC10432576 DOI: 10.1016/j.celrep.2023.112109] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Topological stress can cause converging replication forks to stall during termination of vertebrate DNA synthesis. However, replication forks ultimately overcome fork stalling, suggesting that alternative mechanisms of termination exist. Using proteomics in Xenopus egg extracts, we show that the helicase RTEL1 and the replisome protein MCM10 are highly enriched on chromatin during fork convergence and are crucially important for fork convergence under conditions of topological stress. RTEL1 and MCM10 cooperate to promote fork convergence and do not impact topoisomerase activity but do promote fork progression through a replication barrier. Thus, RTEL1 and MCM10 play a general role in promoting progression of stalled forks, including when forks stall during termination. Our data reveal an alternate mechanism of termination involving RTEL1 and MCM10 that can be used to complete DNA synthesis under conditions of topological stress.
Collapse
Affiliation(s)
- Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Emma J Vontalge
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Briana H Greer
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tamar Kavlashvili
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Brandt F Eichman
- Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Cebrián J, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ, Schvartzman JB. Two-Dimensional Gel Electrophoresis to Study the Activity of Type IIA Topoisomerases on Plasmid Replication Intermediates. BIOLOGY 2021; 10:biology10111195. [PMID: 34827187 PMCID: PMC8615216 DOI: 10.3390/biology10111195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/28/2022]
Abstract
Simple Summary During replication, DNA molecules undergo topological changes that affect supercoiling, catenation and knotting. To better understand this process and the role of topoisomerases, the enzymes that control DNA topology in in vivo, two-dimensional agarose gel electrophoresis were used to investigate the efficiency of three type II DNA topoisomerases, the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α, on partially replicated bacterial plasmids containing replication forks stalled at specific sites. The results obtained revealed that despite the fact these DNA topoisomerases may have evolved to accomplish specific tasks, they share abilities. To our knowledge, this is the first time two-dimensional agarose gel electrophoresis have been used to examine the ability of these topoisomerases to relax supercoiling in the un-replicated region and unlink pre-catenanes in the replicated one of partially replicated molecules in vitro. The methodology described here can be used to study the role of different topoisomerases in partially replicated molecules. Abstract DNA topoisomerases are the enzymes that regulate DNA topology in all living cells. Since the discovery and purification of ω (omega), when the first were topoisomerase identified, the function of many topoisomerases has been examined. However, their ability to relax supercoiling and unlink the pre-catenanes of partially replicated molecules has received little attention. Here, we used two-dimensional agarose gel electrophoresis to test the function of three type II DNA topoisomerases in vitro: the prokaryotic DNA gyrase, topoisomerase IV and the human topoisomerase 2α. We examined the proficiency of these topoisomerases on a partially replicated bacterial plasmid: pBR-TerE@AatII, with an unidirectional replicating fork, stalled when approximately half of the plasmid had been replicated in vivo. DNA was isolated from two strains of Escherichia coli: DH5αF’ and parE10. These experiments allowed us to assess, for the first time, the efficiency of the topoisomerases examined to resolve supercoiling and pre-catenanes in partially replicated molecules and fully replicated catenanes formed in vivo. The results obtained revealed the preferential functions and also some redundancy in the abilities of these DNA topoisomerases in vitro.
Collapse
Affiliation(s)
- Jorge Cebrián
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - Victor Martínez
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| | - María-José Fernández-Nestosa
- Bioinformatics Laboratory, Polytechnic School, National University of Asunción, San Lorenzo P.O. Box 2111, Paraguay;
- Correspondence:
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), 28040 Madrid, Spain; (J.C.); (P.H.); (D.B.K.); (J.B.S.)
| |
Collapse
|
6
|
Schvartzman JB, Martínez V, Hernández P, Krimer DB, Fernández-Nestosa MJ. Changes in the topology of DNA replication intermediates: Important discrepancies between in vitro and in vivo. Bioessays 2021; 43:e2000309. [PMID: 33629756 DOI: 10.1002/bies.202000309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/08/2022]
Abstract
The topology of DNA duplexes changes during replication and also after deproteinization in vitro. Here we describe these changes and then discuss for the first time how the distribution of superhelical stress affects the DNA topology of replication intermediates, taking into account the progression of replication forks. The high processivity of Topo IV to relax the left-handed (+) supercoiling that transiently accumulates ahead of the forks is not essential, since DNA gyrase and swiveling of the forks cooperate with Topo IV to accomplish this task in vivo. We conclude that despite Topo IV has a lower processivity to unlink the right-handed (+) crossings of pre-catenanes and fully replicated catenanes, this is indeed its main role in vivo. This would explain why in the absence of Topo IV replication goes-on, but fully replicated sister duplexes remain heavily catenated.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Víctor Martínez
- Directorate of Research and Postgraduate Studies, Polytechnic School, National University of Asunción, P, San Lorenzo, Paraguay
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - María-José Fernández-Nestosa
- Directorate of Research and Postgraduate Studies, Polytechnic School, National University of Asunción, P, San Lorenzo, Paraguay
| |
Collapse
|
7
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
8
|
Heintzman DR, Campos LV, Byl JAW, Osheroff N, Dewar JM. Topoisomerase II Is Crucial for Fork Convergence during Vertebrate Replication Termination. Cell Rep 2020; 29:422-436.e5. [PMID: 31597101 PMCID: PMC6919565 DOI: 10.1016/j.celrep.2019.08.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/27/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022] Open
Abstract
Termination of DNA replication occurs when two replication forks converge upon the same stretch of DNA. Resolution of topological stress by topoisomerases is crucial for fork convergence in bacteria and viruses, but it is unclear whether similar mechanisms operate during vertebrate termination. Using Xenopus egg extracts, we show that topoisomerase II (Top2) resolves topological stress to prevent converging forks from stalling during termination. Under these conditions, stalling arises due to an inability to unwind the final stretch of DNA ahead of each fork. By promoting fork convergence, Top2 facilitates all downstream events of termination. Converging forks ultimately overcome stalling independently of Top2, indicating that additional mechanisms support fork convergence. Top2 acts throughout replication to prevent the accumulation of topological stress that would otherwise stall converging forks. Thus, termination poses evolutionarily conserved topological problems that can be mitigated by careful execution of the earlier stages of replication.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lillian V Campos
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Medicine (Hematology, Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - James M Dewar
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Le TT, Gao X, Park SH, Lee J, Inman JT, Lee JH, Killian JL, Badman RP, Berger JM, Wang MD. Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity. Cell 2020; 179:619-631.e15. [PMID: 31626768 PMCID: PMC6899335 DOI: 10.1016/j.cell.2019.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
Abstract
DNA replication in eukaryotes generates DNA supercoiling, which may intertwine (braid) daughter chromatin fibers to form precatenanes, posing topological challenges during chromosome segregation. The mechanisms that limit precatenane formation remain unclear. By making direct torque measurements, we demonstrate that the intrinsic mechanical properties of chromatin play a fundamental role in dictating precatenane formation and regulating chromatin topology. Whereas a single chromatin fiber is torsionally soft, a braided fiber is torsionally stiff, indicating that supercoiling on chromatin substrates is preferentially directed in front of the fork during replication. We further show that topoisomerase II relaxation displays a strong preference for a single chromatin fiber over a braided fiber. These results suggest a synergistic coordination-the mechanical properties of chromatin inherently suppress precatenane formation during replication elongation by driving DNA supercoiling ahead of the fork, where supercoiling is more efficiently removed by topoisomerase II. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Seong Ha Park
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica L Killian
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Ryan P Badman
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Martínez V, Schaerer C, Hernández P, Krimer DB, Schvartzman JB, Fernández-Nestosa MJ. Distribution of torsional stress between the un-replicated and replicated regions in partially replicated molecules. J Biomol Struct Dyn 2020; 39:2266-2277. [DOI: 10.1080/07391102.2020.1751294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Víctor Martínez
- Polytechnic School, National University of Asunción, San Lorenzo, Paraguay
| | - Christian Schaerer
- Polytechnic School, National University of Asunción, San Lorenzo, Paraguay
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Dora B. Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jorge B. Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | |
Collapse
|
11
|
Schvartzman JB, Hernández P, Krimer DB. Replication Fork Barriers and Topological Barriers: Progression of DNA Replication Relies on DNA Topology Ahead of Forks. Bioessays 2020; 42:e1900204. [PMID: 32115727 DOI: 10.1002/bies.201900204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Indexed: 11/09/2022]
Abstract
During replication, the topology of DNA changes continuously in response to well-known activities of DNA helicases, polymerases, and topoisomerases. However, replisomes do not always progress at a constant speed and can slow-down and even stall at precise sites. The way these changes in the rate of replisome progression affect DNA topology is not yet well understood. The interplay of DNA topology and replication in several cases where progression of replication forks reacts differently to changes in DNA topology ahead is discussed here. It is proposed, there are at least two types of replication fork barriers: those that behave also as topological barriers and those that do not. Two-Dimensional (2D) agarose gel electrophoresis is the method of choice to distinguish between these two different types of replication fork barriers.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
12
|
Martínez-Santiago CJ, Quiñones E. On matching the magnetic torque exerted by a rotating magnetic field to the torsional stiffness of braided DNA molecules for torque estimations. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abstract
DNA topoisomerases are proven therapeutic targets of antibacterial agents. Quinolones, especially fluoroquinolones, are the most successful topoisomerase-targeting antibacterial drugs. These drugs target type IIA topoisomerases in bacteria. Recent structural and biochemical studies on fluoroquinolones have provided the molecular basis for both their mechanism of action, as well as the molecular basis of bacterial resistance. Due to the development of drug resistance, including fluoroquinolone resistance, among bacterial pathogens, there is an urgent need to discover novel antibacterial agents. Recent advances in topoisomerase inhibitors may lead to the development of novel antibacterial drugs that are effective against fluoroquinolone-resistant pathogens. They include type IIA topoisomerase inhibitors that either interact with the GyrB/ParE subunit or form nick-containing ternary complexes. In addition, several topoisomerase I inhibitors have recently been identified. Thus, DNA topoisomerases remain important targets of antibacterial agents.
Collapse
|
14
|
Shobahah J, Xue S, Hu D, Zhao C, Wei M, Quan Y, Yu W. Quantitative phosphoproteome on the silkworm (Bombyx mori) cells infected with baculovirus. Virol J 2017. [PMID: 28629377 PMCID: PMC5477107 DOI: 10.1186/s12985-017-0783-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Bombyx mori has become an important model organism for many fundamental studies. Bombyx mori nucleopolyhedrovirus (BmNPV) is a significant pathogen to Bombyx mori, yet also an efficient vector for recombinant protein production. A previous study indicated that acetylation plays many vital roles in several cellular processes of Bombyx mori while global phosphorylation pattern upon BmNPV infection remains elusive. Method Employing tandem mass tag (TMT) labeling and phosphorylation affinity enrichment followed by high-resolution LC-MS/MS analysis and intensive bioinformatics analysis, the quantitative phosphoproteome in Bombyx mori cells infected by BmNPV at 24 hpi with an MOI of 10 was extensively examined. Results Totally, 6480 phosphorylation sites in 2112 protein groups were identified, among which 4764 sites in 1717 proteins were quantified. Among the quantified proteins, 81 up-regulated and 25 down-regulated sites were identified with significant criteria (the quantitative ratio above 1.3 was considered as up-regulation and below 0.77 was considered as down-regulation) and with significant p-value (p < 0.05). Some proteins of BmNPV were also hyperphosphorylated during infection, such as P6.9, 39 K, LEF-6, Ac58-like protein, Ac82-like protein and BRO-D. Conclusion The phosphorylated proteins were primary involved in several specific functions, out of which, we focused on the binding activity, protein synthesis, viral replication and apoptosis through kinase activity.
Collapse
Affiliation(s)
- Jauharotus Shobahah
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Shengjie Xue
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Dongbing Hu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Cui Zhao
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Ming Wei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Yanping Quan
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Xiasha High-Tech Zone No.2 Road, Zhejiang Province, Hangzhou, 310018, People's Republic of China. .,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Province, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
15
|
Abstract
Genome duplication is carried out by pairs of replication forks that assemble at origins of replication and then move in opposite directions. DNA replication ends when converging replication forks meet. During this process, which is known as replication termination, DNA synthesis is completed, the replication machinery is disassembled and daughter molecules are resolved. In this Review, we outline the steps that are likely to be common to replication termination in most organisms, namely, fork convergence, synthesis completion, replisome disassembly and decatenation. We briefly review the mechanism of termination in the bacterium Escherichia coli and in simian virus 40 (SV40) and also focus on recent advances in eukaryotic replication termination. In particular, we discuss the recently discovered E3 ubiquitin ligases that control replisome disassembly in yeast and higher eukaryotes, and how their activity is regulated to avoid genome instability.
Collapse
|
16
|
Bates D, Pettitt BM, Buck GR, Zechiedrich L. Importance of disentanglement and entanglement during DNA replication and segregation: Comment on: "Disentangling DNA molecules" by Alexander Vologodskii. Phys Life Rev 2016; 18:160-164. [PMID: 27666770 DOI: 10.1016/j.plrev.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Affiliation(s)
- David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gregory R Buck
- Department of Mathematics, St. Anselm College, Manchester, NH, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Yuan Q, Dohrmann PR, Sutton MD, McHenry CS. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks. J Biol Chem 2016; 291:11727-35. [PMID: 27056333 DOI: 10.1074/jbc.m116.725358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 11/06/2022] Open
Abstract
Examples of dynamic polymerase exchange have been previously characterized in model systems provided by coliphages T4 and T7. Using a dominant negative D403E polymerase (Pol) III α that can form initiation complexes and sequester primer termini but not elongate, we investigated the possibility of exchange at the Escherichia coli replication fork on a rolling circle template. Unlike other systems, addition of polymerase alone did not lead to exchange. Only when D403E Pol III was bound to a τ-containing DnaX complex did exchange occur. In contrast, addition of Pol IV led to rapid exchange in the absence of bound DnaX complex. Examination of Pol III* with varying composition of τ or the alternative shorter dnaX translation product γ showed that τ-, τ2-, or τ3-DnaX complexes supported equivalent levels of synthesis, identical Okazaki fragment size, and gaps between fragments, possessed the ability to challenge pre-established replication forks, and displayed equivalent susceptibility to challenge by exogenous D403E Pol III*. These findings reveal that redundant interactions at the replication fork must stabilize complexes containing only one τ. Previously, it was thought that at least two τs in the trimeric DnaX complex were required to couple the leading and lagging strand polymerases at the replication fork. Possible mechanisms of exchange are discussed.
Collapse
Affiliation(s)
- Quan Yuan
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303 and
| | - Paul R Dohrmann
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303 and
| | - Mark D Sutton
- the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214
| | - Charles S McHenry
- From the Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303 and
| |
Collapse
|
18
|
Cebrián J, Castán A, Martínez V, Kadomatsu-Hermosa MJ, Parra C, Fernández-Nestosa MJ, Schaerer C, Hernández P, Krimer DB, Schvartzman JB. Direct Evidence for the Formation of Precatenanes during DNA Replication. J Biol Chem 2015; 290:13725-35. [PMID: 25829493 PMCID: PMC4447951 DOI: 10.1074/jbc.m115.642272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
The dynamics of DNA topology during replication are still poorly understood. Bacterial plasmids are negatively supercoiled. This underwinding facilitates strand separation of the DNA duplex during replication. Leading the replisome, a DNA helicase separates the parental strands that are to be used as templates. This strand separation causes overwinding of the duplex ahead. If this overwinding persists, it would eventually impede fork progression. In bacteria, DNA gyrase and topoisomerase IV act ahead of the fork to keep DNA underwound. However, the processivity of the DNA helicase might overcome DNA gyrase and topoisomerase IV. It was proposed that the overwinding that builds up ahead of the fork could force it to swivel and diffuse this positive supercoiling behind the fork where topoisomerase IV would also act to maintain replicating the DNA underwound. Putative intertwining of sister duplexes in the replicated region are called precatenanes. Fork swiveling and the formation of precatenanes, however, are still questioned. Here, we used classical genetics and high resolution two-dimensional agarose gel electrophoresis to examine the torsional tension of replication intermediates of three bacterial plasmids with the fork stalled at different sites before termination. The results obtained indicated that precatenanes do form as replication progresses before termination.
Collapse
Affiliation(s)
- Jorge Cebrián
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Alicia Castán
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Víctor Martínez
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Maridian J Kadomatsu-Hermosa
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Cristina Parra
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - María José Fernández-Nestosa
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Christian Schaerer
- the Scientific and Applied Computing Laboratory, Polytechnic School, National University of Asunción. P.O. Box 2111 SL. San Lorenzo, Paraguay
| | - Pablo Hernández
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Dora B Krimer
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| | - Jorge B Schvartzman
- From the Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040, Madrid, Spain and
| |
Collapse
|
19
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|
20
|
Yu H, Dröge P. Replication-induced supercoiling: a neglected DNA transaction regulator? Trends Biochem Sci 2014; 39:219-20. [PMID: 24637041 DOI: 10.1016/j.tibs.2014.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/13/2022]
Abstract
Dynamic (-) DNA supercoiling generated in the wake of translocating protein complexes is known to occur during transcription. Recent studies indicate that (-) superhelical tension also builds up specifically in the leading duplex during replication. Here, we argue that this unrecognized supercoiling is causally involved in the regulation of key DNA transactions and deserves further consideration.
Collapse
Affiliation(s)
- Haojie Yu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
21
|
Abstract
DNA topology changes dynamically during DNA replication. Supercoiling, precatenation, catenation and knotting interplay throughout the process that is finely regulated by DNA topoisomerases. In the present article, we provide an overview of theoretical and experimental approaches to understand the interplay between various manifestations of topological constraints acting on replicating DNA molecules. Data discussed reveal that DNA entanglements (supercoils and catenanes) play an active role in preventing the formation of deleterious knots.
Collapse
|
22
|
Kurth I, Georgescu RE, O'Donnell ME. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases. Nature 2013; 496:119-22. [PMID: 23535600 PMCID: PMC3618558 DOI: 10.1038/nature11988] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022]
Abstract
Chromosomal replication machines contain coupled DNA polymerases that simultaneously replicate the leading and lagging strands1. However, coupled replication presents a largely unrecognized topological problem. Since DNA polymerase must travel a helical path during synthesis, the physical connection between leading and lagging strand polymerases causes the daughter strands to entwine, or produces extensive buildup of negative supercoils in the newly synthesized DNA2–4. How DNA polymerases maintain their connection during coupled replication despite these topological challenges is a mystery. Here, we examine the dynamics of the E. coli replisome, by ensemble and single-molecule methods that may solve this topological problem independent of topoisomerases. We find that the lagging strand polymerase frequently releases from an Okazaki fragment before completion, leaving single-strand gaps behind. Dissociation of the polymerase does not result in loss from the replisome due to its contact with the leading-strand polymerase. This behavior, referred to as “signal release”, had been thought to require a protein, possibly primase, to pry polymerase from incompletely extended DNA fragments5–7. However, we observe that signal release is independent of primase and does not appear to require a protein trigger at all. Instead, the lagging-strand polymerase is simply less processive in the context of a replisome. Interestingly, when the lagging-strand polymerase is supplied with primed DNA in trans, uncoupling it from the fork, high processivity is restored. Hence, we propose that coupled polymerases introduce topological changes, possibly by accumulation of superhelical tension in the newly synthesized DNA, that cause lower processivity and transient lagging-strand polymerase dissociation from DNA.
Collapse
Affiliation(s)
- Isabel Kurth
- The Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
23
|
Interplay between type 1A topoisomerases and gyrase in chromosome segregation in Escherichia coli. J Bacteriol 2013; 195:1758-68. [PMID: 23396913 DOI: 10.1128/jb.02001-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli possesses two type 1A topoisomerases, Topo I (topA) and Topo III (topB). Topo I relaxes excess negative supercoiling, and topA mutants can grow only in the presence of compensatory mechanisms, such as gyrase mutations. topB mutants grow as well as wild-type cells. In vitro, Topo III, but not Topo I, can efficiently decatenate DNA during replication. However, in vivo, a chromosome segregation defect is seen only when both type 1A topoisomerases are absent. Here we present experimental evidence for an interplay between gyrase and type 1A topoisomerases in chromosome segregation. We found that both the growth defect and the Par(-) phenotypes of a gyrB(Ts) mutant at nonpermissive temperatures were significantly corrected by deleting topA, but only when topB was present. Overproducing Topo IV, the major cellular decatenase, could not substitute for topB. We also show that overproducing Topo III at a very high level could suppress the Par(-) phenotype. We previously found that the growth and chromosome segregation defects of a triple topA rnhA gyrB(Ts) mutant in which gyrase supercoiling activity was strongly inhibited could be corrected by overproducing Topo III (V. Usongo, F. Nolent, P. Sanscartier, C. Tanguay, S. Broccoli, I. Baaklini, K. Drlica, and M. Drolet, Mol. Microbiol. 69:968-981, 2008). We show here that this overproduction could be bypassed by substituting the gyrB(Ts) allele for a gyrB(+) one or by growing cells in a minimal medium, conditions that reduced both topA- and rnhA-dependent unregulated replication. Altogether, our data point to a role for Topo III in chromosome segregation when gyrase is inefficient and suggest that Topo I plays an indirect role via supercoiling regulation.
Collapse
|
24
|
Vologodskii A. Unlinking of supercoiled DNA catenanes by type IIA topoisomerases. Biophys J 2011; 101:1403-11. [PMID: 21943421 DOI: 10.1016/j.bpj.2011.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/21/2011] [Accepted: 08/11/2011] [Indexed: 11/29/2022] Open
Abstract
It was found recently that DNA catenanes, formed during replication of circular plasmids, become positively (+) supercoiled, and the unlinking of such catenanes by type IIA topoisomerases proceeds much more efficiently than the unlinking of negatively (-) supercoiled catenanes. In an attempt to explain this striking finding we studied, by computer simulation, conformational properties of supercoiled DNA catenanes. Although the simulation showed that conformational properties of (+) and (-) supercoiled replication catenanes are very different, these properties per se do not give any advantage to (+) supercoiled over (-) supercoiled DNA catenanes for unlinking. An advantage became evident, however, when we took into account the established features of the enzymatic reaction catalyzed by the topoisomerases. The enzymes create a sharp DNA bend in the first bound DNA segment and allow for the transport of the second segment only from inside the bend to its outside. We showed that in (-) supercoiled DNA catenanes this protein-bound bent segment becomes nearly inaccessible for segments of the other linked DNA molecule, inhibiting the unlinking.
Collapse
|
25
|
Abstract
DNA supercoiling is one of the mechanisms that can help unlinking of newly replicated DNA molecules. Although DNA topoisomerases, which catalyze the strand passing of DNA segments through one another, make the unlinking problem solvable in principle, it remains difficult to complete the process that enables the separation of the sister duplexes. A few different mechanisms were developed by nature to solve the problem. Some of the mechanisms are very intuitive while the others, like topology simplification by type II DNA topoisomerases and DNA supercoiling, are not so evident. A computer simulation and analysis of linked sister plasmids formed in Escherichia coli cells with suppressed topoisomerase IV suggests an insight into the latter mechanism.
Collapse
|
26
|
Abstract
DNA catenanes are important objects in biology, foremost as they appear during replication of circular DNA molecules. In this review we analyze how conformational properties of DNA catenanes can be studied by computer simulation. We consider classification of catenanes, their topological invariants and the methods of calculation of these invariants. We briefly analyze the DNA model and the simulation procedure used to sample the equilibrium conformational ensemble of catenanes with a particular topology. We consider how to avoid direct simulation of many DNA molecules when we need to account for the linking-unlinking process. The simulation methods and their comparisons with experiments are illustrated by some examples. We also describe an approach that allows simulating the steady state fraction of DNA catenanes created by type II topoisomerases.
Collapse
Affiliation(s)
- Alexander Vologodskii
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003, USA.
| | | |
Collapse
|
27
|
Abstract
DNA topoisomerases are enzymes that control the topological state of DNA in all cells; they have central roles in DNA replication and transcription. They are classified into two types, I and II, depending on whether they catalyze reactions involving the breakage of one or both strands of DNA. Structural and mechanistic distinctions have led to further classifications: IA, IB, IC, IIA, and IIB. The essence of the topoisomerase reaction is the ability of the enzymes to stabilize transient breaks in DNA, via the formation of tyrosyl-phosphate covalent intermediates. The essential nature of topoisomerases and their ability to stabilize DNA breaks has led to them being key targets for antibacterial and anticancer agents. This chapter reviews the basic features of topoisomerases focussing mainly on the prokaryotic enzymes. We highlight recent structural advances that have given new insight into topoisomerase mechanisms and into the molecular basis of the action of topoisomerase-specific drugs.
Collapse
|
28
|
Lopez CR, Yang S, Deibler RW, Ray SA, Pennington JM, Digate RJ, Hastings PJ, Rosenberg SM, Zechiedrich EL. A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol Microbiol 2006; 58:80-101. [PMID: 16164551 DOI: 10.1111/j.1365-2958.2005.04812.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The physiological role of topoisomerase III is unclear for any organism. We show here that the removal of topoisomerase III in temperature sensitive topoisomerase IV mutants in Escherichia coli results in inviability at the permissive temperature. The removal of topoisomerase III has no effect on the accumulation of catenated intermediates of DNA replication, even when topoisomerase IV activity is removed. Either recQ or recA null mutations, but not helD null or lexA3, partially rescued the synthetic lethality of the double topoisomerase III/IV mutant, indicating a role for topoisomerase III in recombination. We find a bias against deleting the gene encoding topoisomerase III in ruvC53 or DeltaruvABC backgrounds compared with the isogenic wild-type strains. The topoisomerase III RuvC double mutants that can be constructed are five- to 10-fold more sensitive to UV irradiation and mitomycin C treatment and are twofold less efficient in transduction efficiency than ruvC53 mutants. The overexpression of ruvABC allows the construction of the topoisomerase III/IV double mutant. These data are consistent with a role for topoisomerase III in disentangling recombination intermediates as an alternative to RuvABC to maintain the stability of the genome.
Collapse
Affiliation(s)
- Christopher R Lopez
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schvartzman JB, Stasiak A. A topological view of the replicon. EMBO Rep 2004; 5:256-61. [PMID: 14993926 PMCID: PMC1299012 DOI: 10.1038/sj.embor.7400101] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/23/2004] [Indexed: 11/09/2022] Open
Abstract
The replication of circular DNA faces topological obstacles that need to be overcome to allow the complete duplication and separation of newly replicated molecules. Small bacterial plasmids provide a perfect model system to study the interplay between DNA helicases, polymerases, topoisomerases and the overall architecture of partially replicated molecules. Recent studies have shown that partially replicated circular molecules have an amazing ability to form various types of structures (supercoils, precatenanes, knots and catenanes) that help to accommodate the dynamic interplay between duplex unwinding at the replication fork and DNA unlinking by topoisomerases.
Collapse
Affiliation(s)
- Jorge B. Schvartzman
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Tel:+34 91 837 3112; Fax: +34 91 536 0432;
| | - Andrzej Stasiak
- Laboratoire d'Analyse Ultrastructurale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
- Tel: +41 21 692 4282; Fax: +41 21 692 4105;
| |
Collapse
|
30
|
Postow L, Hardy CD, Arsuaga J, Cozzarelli NR. Topological domain structure of the Escherichia coli chromosome. Genes Dev 2004; 18:1766-79. [PMID: 15256503 PMCID: PMC478196 DOI: 10.1101/gad.1207504] [Citation(s) in RCA: 344] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circular chromosome of Escherichia coli is organized into independently supercoiled loops, or topological domains. We investigated the organization and size of these domains in vivo and in vitro. Using the expression of >300 supercoiling-sensitive genes to gauge local chromosomal supercoiling, we quantitatively measured the spread of relaxation from double-strand breaks generated in vivo and thereby calculated the distance to the nearest domain boundary. In a complementary approach, we gently isolated chromosomes and examined the lengths of individual supercoiled loops by electron microscopy. The results from these two very different methods agree remarkably well. By comparing our results to Monte Carlo simulations of domain organization models, we conclude that domain barriers are not placed stably at fixed sites on the chromosome but instead are effectively randomly distributed. We find that domains are much smaller than previously reported, approximately 10 kb on average. We discuss the implications of these findings and present models for how domain barriers may be generated and displaced during the cell cycle in a stochastic fashion.
Collapse
Affiliation(s)
- Lisa Postow
- Department of Molecular and Cell Biology and Department of Mathematics, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
31
|
Hardy CD, Crisona NJ, Stone MD, Cozzarelli NR. Disentangling DNA during replication: a tale of two strands. Philos Trans R Soc Lond B Biol Sci 2004; 359:39-47. [PMID: 15065655 PMCID: PMC1693293 DOI: 10.1098/rstb.2003.1363] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The seminal papers by Watson and Crick in 1953 on the structure and function of DNA clearly enunciated the challenge their model presented of how the intertwined strands of DNA are unwound and separated for replication to occur. We first give a historical overview of the major discoveries in the past 50 years that address this challenge. We then describe in more detail the cellular mechanisms responsible for the unlinking of DNA. No single strategy on its own accounts for the complete unlinking of chromosomes required for DNA segregation to proceed. Rather, it is the combined effects of topoisomerase action, chromosome organization and DNA-condensing proteins that allow the successful partitioning of chromosomes into dividing cells. Finally, we propose a model of chromosome structure, consistent with recent findings, that explains how the problem of unlinking is alleviated by the division of chromosomal DNA into manageably sized domains.
Collapse
Affiliation(s)
- Christine D Hardy
- Department of Molecular and Cell Biology, University of California, 16 Barker Hall, Berkeley, CA 94720-3204, USA
| | | | | | | |
Collapse
|
32
|
Wellinger RE, Schär P, Sogo JM. Rad52-independent accumulation of joint circular minichromosomes during S phase in Saccharomyces cerevisiae. Mol Cell Biol 2003; 23:6363-72. [PMID: 12944465 PMCID: PMC193689 DOI: 10.1128/mcb.23.18.6363-6372.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 04/02/2003] [Accepted: 06/20/2003] [Indexed: 01/10/2023] Open
Abstract
We investigated the formation of X-shaped molecules consisting of joint circular minichromosomes (joint molecules) in Saccharomyces cerevisiae by two-dimensional neutral/neutral gel electrophoresis of psoralen-cross-linked DNA. The appearance of joint molecules was found to be replication dependent. The joint molecules had physical properties reminiscent of Holliday junctions or hemicatenanes, as monitored by strand displacement, branch migration, and nuclease digestion. Physical linkage of the joint molecules was detected along the entire length of the minichromosome and most likely involved newly replicated sister chromatids. Surprisingly, the formation of joint molecules was found to be independent of Rad52p as well as of other factors associated with a function in homologous recombination or in the resolution of stalled replication intermediates. These findings thus imply the existence of a nonrecombinational pathway(s) for the formation of joint molecules during the process of DNA replication or minichromosome segregation.
Collapse
Affiliation(s)
- Ralf Erik Wellinger
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
33
|
Stone MD, Bryant Z, Crisona NJ, Smith SB, Vologodskii A, Bustamante C, Cozzarelli NR. Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc Natl Acad Sci U S A 2003; 100:8654-9. [PMID: 12857958 PMCID: PMC166367 DOI: 10.1073/pnas.1133178100] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli topoisomerase (Topo) IV is an essential type II Topo that removes DNA entanglements created during DNA replication. Topo IV relaxes (+) supercoils much faster than (-) supercoils, promoting replication while sparing the essential (-) supercoils. Here, we investigate the mechanism underlying this chiral preference. Using DNA binding assays and a single-molecule DNA braiding system, we show that Topo IV recognizes the chiral crossings imposed by the left-handed superhelix of a (+) supercoiled DNA, rather than global topology, twist deformation, or local writhe. Monte Carlo simulations of braid, supercoil, and catenane configurations demonstrate how a preference for a single-crossing geometry during strand passage can allow Topo IV to perform its physiological functions. Single-enzyme braid relaxation experiments also provide a direct measure of the processivity of the enzyme and offer insight into its mechanochemical cycle.
Collapse
Affiliation(s)
- Michael D Stone
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Nurse P, Levine C, Hassing H, Marians KJ. Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem 2003; 278:8653-60. [PMID: 12509418 DOI: 10.1074/jbc.m211211200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
topB, encoding topoisomerase III, was identified as a high copy suppressor of the temperature-sensitive parC1215 allele, encoding one of the subunits of topoisomerase IV. Overexpression of topoisomerase III at the nonpermissive temperature was shown subsequently to restore timely chromosome decatenation and suppress lethality in strains carrying either temperature-sensitive parE or parC alleles. By developing an assay in vitro for precatenane unlinking, we demonstrated directly that both topoisomerase III and topoisomerase IV were efficient at this task, whereas DNA gyrase was very inefficient at precatenane removal. These observations suggest that precatenane unlinking is sufficient to sustain decatenation of replicating daughter chromosomes in the cell.
Collapse
Affiliation(s)
- Pearl Nurse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
35
|
Olavarrieta L, Martínez-Robles ML, Hernández P, Krimer DB, Schvartzman JB. Knotting dynamics during DNA replication. Mol Microbiol 2002; 46:699-707. [PMID: 12410827 DOI: 10.1046/j.1365-2958.2002.03217.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The topology of plasmid DNA changes continuously as replication progresses. But the dynamics of the process remains to be fully understood. Knotted bubbles form when topo IV knots the daughter duplexes behind the fork in response to their degree of intertwining. Here, we show that knotted bubbles can form during unimpaired DNA replication, but they become more evident in partially replicated intermediates containing a stalled fork. To learn more about the dynamics of knot formation as replication advances, we used two-dimensional agarose gel electrophoresis to identify knotted bubbles in partially replicated molecules in which the replication fork stalled at different stages of the process. The number and complexity of knotted bubbles rose as a function of bubble size, suggesting that knotting is affected by both precatenane density and bubble size.
Collapse
Affiliation(s)
- L Olavarrieta
- Departamento de Biología Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
36
|
Olavarrieta L, Hernández P, Krimer DB, Schvartzman JB. DNA knotting caused by head-on collision of transcription and replication. J Mol Biol 2002; 322:1-6. [PMID: 12215409 DOI: 10.1016/s0022-2836(02)00740-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Collision of transcription and replication is uncommon, but the reason for nature to avoid this type of collision is still poorly understood. In Escherichia coli pBR322 is unstable and rapidly lost without selective pressure. Stability can be rescued if transcription of the tetracycline-resistance gene (Tet(R)), progressing against replication, is avoided. We investigated the topological consequences of the collision of transcription and replication in pBR322-derived plasmids where head-on collision between the replication fork and the RNA polymerase transcribing the Tet(R) gene was allowed or avoided. The results obtained indicate that this type of collision triggers knotting of the daughter duplexes behind the fork. We propose this deleterious topological consequence could explain the instability of pBR322 and could be also one of the reasons for nature to avoid head-on collision of transcription and replication.
Collapse
MESH Headings
- Autoradiography
- Comet Assay
- DNA Replication
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/biosynthesis
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Genes, Bacterial/genetics
- Models, Genetic
- Nucleic Acid Conformation
- Plasmids/biosynthesis
- Plasmids/chemistry
- Plasmids/genetics
- Plasmids/metabolism
- Tetracycline Resistance/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- L Olavarrieta
- Departamento de Biología, Celular y del Desarrollo, Centro de Investigaciones Biológicas (CSIC), Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
37
|
Abstract
Type II topoisomerases are responsible for DNA unlinking during DNA replication and chromosome segregation. Although eukaryotic enzymes are homodimers and prokaryotic enzymes are heterotetramers, both prokaryotic and eukaryotic type II topoisomerases belong to a single protein family. The amino- and carboxyl-terminal domains of eukaryotic enzymes are homologous to the ATP-binding and catalytic subunits of prokaryotic enzymes, respectively. Topoisomerase IV, a prokaryotic type II topoisomerase, consists of the ATP-binding subunit, ParE, and the catalytic subunit, ParC. We have joined the coding regions of parE and parC in frame and constructed a fusion protein of the two subunits of topoisomerase IV. This fusion protein, ParEC, can catalyze both decatenation and relaxation reactions. The ParEC protein is also capable of decatenating replicating daughter DNA molecules during oriC DNA replication in vitro. Furthermore, the fusion gene, parEC, complements the temperature-sensitive growth of both parC and parE strains, indicating that the ParEC protein can substitute for topoisomerase IV in vivo. These results demonstrate that a fusion protein of the two subunits of topoisomerase IV is a functional topoisomerase. Thus, a heterotetrameric type II topoisomerase can be converted into a homodimeric type II topoisomerase by gene fusion.
Collapse
Affiliation(s)
- L S Lavasani
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
38
|
Postow L, Crisona NJ, Peter BJ, Hardy CD, Cozzarelli NR. Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci U S A 2001; 98:8219-26. [PMID: 11459956 PMCID: PMC37424 DOI: 10.1073/pnas.111006998] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unwinding of the parental DNA duplex during replication causes a positive linking number difference, or superhelical strain, to build up around the elongating replication fork. The branching at the fork and this strain bring about different conformations from that of (-) supercoiled DNA that is not being replicated. The replicating DNA can form (+) precatenanes, in which the daughter DNAs are intertwined, and (+) supercoils. Topoisomerases have the essential role of relieving the superhelical strain by removing these structures. Stalled replication forks of molecules with a (+) superhelical strain have the additional option of regressing, forming a four-way junction at the replication fork. This four-way junction can be acted on by recombination enzymes to restart replication. Replication and chromosome folding are made easier by topological domain barriers, which sequester the substrates for topoisomerases into defined and concentrated regions. Domain barriers also allow replicated DNA to be (-) supercoiled. We discuss the importance of replicating DNA conformations and the roles of topoisomerases, focusing on recent work from our laboratory.
Collapse
Affiliation(s)
- L Postow
- University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
39
|
Huang J, Schlick T, Vologodskii A. Dynamics of site juxtaposition in supercoiled DNA. Proc Natl Acad Sci U S A 2001; 98:968-73. [PMID: 11158579 PMCID: PMC14693 DOI: 10.1073/pnas.98.3.968] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Juxtaposition kinetics between specific sites in supercoiled DNA is investigated at close to physiological ionic conditions by Brownian dynamics simulations. At such conditions, supercoiled DNA is interwound, and the probability of spatial site juxtaposition is much higher than in relaxed DNA. We find, however, that supercoiling does not correspondingly increase the rate of juxtaposition at these physiological conditions. An explanation to this unexpected finding emerges on analysis of the juxtaposition dynamics. We note that although a particular site i(1) in supercoiled DNA is often in close proximity (juxtaposed) to another site i(2), the change of i(2) occurs very slowly and depends largely on internal slithering of opposite segments of the DNA superhelix. Such slithering results in long correlations between successive values of i(2); these correlations increase the average time of juxtaposition between two DNA sites. Random collisions between sites located on different superhelix branches-although increasing in importance with DNA size-contribute less substantially to site juxtaposition at high salt than slithering for DNA up to 6 kb in length.
Collapse
Affiliation(s)
- J Huang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
40
|
Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV, Cozzarelli NR. Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem 2001; 276:2790-6. [PMID: 11056156 DOI: 10.1074/jbc.m006736200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The advance of a DNA replication fork requires an unwinding of the parental double helix. This in turn creates a positive superhelical stress, a (+)-DeltaLk, that must be relaxed by topoisomerases for replication to proceed. Surprisingly, partially replicated plasmids with a (+)-DeltaLk were not supercoiled nor were the replicated arms interwound in precatenanes. The electrophoretic mobility of these molecules indicated that they have no net writhe. Instead, the (+)-DeltaLk is absorbed by a regression of the replication fork. As the parental DNA strands re-anneal, the resultant displaced daughter strands base pair to each other to form a four-way junction at the replication fork, which is locally identical to a Holliday junction in recombination. We showed by restriction endonuclease digestion that the junction can form at either the terminus or the origin of replication and we visualized the structure with scanning force microscopy. We discuss possible physiological implications of the junction for stalled replication in vivo.
Collapse
Affiliation(s)
- L Postow
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
41
|
Crisona NJ, Strick TR, Bensimon D, Croquette V, Cozzarelli NR. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev 2000; 14:2881-92. [PMID: 11090135 PMCID: PMC317058 DOI: 10.1101/gad.838900] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show that positively supercoiled [(+) SC] DNA is the preferred substrate for Escherichia coli topoisomerase IV (topo IV). We measured topo IV relaxation of (-) and (+) supercoils in real time on single, tethered DNA molecules to complement ensemble experiments. We find that the preference for (+) SC DNA is complete at low enzyme concentration. Otherwise, topo IV relaxed (+) supercoils at a 20-fold faster rate than (-) supercoils, due primarily to about a 10-fold increase in processivity with (+) SC DNA. The preferential cleavage of (+) SC DNA in a competition experiment showed that substrate discrimination can take place prior to strand passage in the presence or absence of ATP. We propose that topo IV discriminates between (-) and (+) supercoiled DNA by recognition of the geometry of (+) SC DNA. Our results explain how topo IV can rapidly remove (+) supercoils to support DNA replication without relaxing the essential (-) supercoils of the chromosome. They also show that the rate of supercoil relaxation by topo IV is several orders of magnitude faster than hitherto appreciated, so that a single enzyme may suffice at each replication fork.
Collapse
Affiliation(s)
- N J Crisona
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
42
|
Khodursky AB, Peter BJ, Schmid MB, DeRisi J, Botstein D, Brown PO, Cozzarelli NR. Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. Proc Natl Acad Sci U S A 2000; 97:9419-24. [PMID: 10944214 PMCID: PMC16879 DOI: 10.1073/pnas.97.17.9419] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used DNA microarrays of the Escherichia coli genome to trace the progression of chromosomal replication forks in synchronized cells. We found that both DNA gyrase and topoisomerase IV (topo IV) promote replication fork progression. When both enzymes were inhibited, the replication fork stopped rapidly. The elongation rate with topo IV alone was 1/3 of normal. Genetic data confirmed and extended these results. Inactivation of gyrase alone caused a slow stop of replication. Topo IV activity was sufficient to prevent accumulation of (+) supercoils in plasmid DNA in vivo, suggesting that topo IV can promote replication by removing (+) supercoils in front of the chromosomal fork.
Collapse
Affiliation(s)
- A B Khodursky
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Shea ME, Hiasa H. Distinct effects of the UvrD helicase on topoisomerase-quinolone-DNA ternary complexes. J Biol Chem 2000; 275:14649-58. [PMID: 10799552 DOI: 10.1074/jbc.275.19.14649] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quinolone antibacterial drugs target both DNA gyrase (Gyr) and topoisomerase IV (Topo IV) and form topoisomerase-quinolone-DNA ternary complexes. The formation of ternary complexes results in the inhibition of DNA replication and leads to the generation of double-strand breaks and subsequent cell death. Here, we have studied the consequences of collisions between the UvrD helicase and the ternary complexes formed with either Gyr, Topo IV, or a mutant Gyr, Gyr (A59), which does not wrap the DNA strand around itself. We show (i) that Gyr-norfloxacin (Norf)-DNA and Topo IV-Norf-DNA, but not Gyr (A59)-Norf-DNA, ternary complexes inhibit the UvrD-catalyzed strand-displacement activity, (ii) that a single-strand break is generated at small portions of the ternary complexes upon their collisions with UvrD, and (iii) that the majority of Topo IV-Norf-DNA ternary complexes become nonreversible when UvrD collides with the Topo IV-Norf-DNA ternary complexes, whereas the majority of Gyr-Norf-DNA ternary complexes remain reversible after their collision with the UvrD helicase. These results indicated that different DNA repair mechanisms might be involved in the repair of Gyr-Norf-DNA and Topo IV-Norf-DNA ternary complexes.
Collapse
Affiliation(s)
- M E Shea
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
44
|
Zechiedrich EL, Khodursky AB, Bachellier S, Schneider R, Chen D, Lilley DM, Cozzarelli NR. Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem 2000; 275:8103-13. [PMID: 10713132 DOI: 10.1074/jbc.275.11.8103] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA supercoiling is essential for bacterial cell survival. We demonstrated that DNA topoisomerase IV, acting in concert with topoisomerase I and gyrase, makes an important contribution to the steady-state level of supercoiling in Escherichia coli. Following inhibition of gyrase, topoisomerase IV alone relaxed plasmid DNA to a final supercoiling density (sigma) of -0.015 at an initial rate of 0.8 links min(-1). Topoisomerase I relaxed DNA at a faster rate, 5 links min(-1), but only to a sigma of -0.05. Inhibition of topoisomerase IV in wild-type cells increased supercoiling to approximately the same level as in a mutant lacking topoisomerase I activity (to sigma = -0.08). The role of topoisomerase IV was revealed by two functional assays. Removal of both topoisomerase I and topoisomerase IV caused the DNA to become hyper-negatively supercoiled (sigma = -0.09), greatly stimulating transcription from the supercoiling sensitive leu-500 promoter and increasing the number of supercoils trapped by lambda integrase site-specific recombination.
Collapse
Affiliation(s)
- E L Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sogo JM, Stasiak A, Martínez-Robles ML, Krimer DB, Hernández P, Schvartzman JB. Formation of knots in partially replicated DNA molecules. J Mol Biol 1999; 286:637-43. [PMID: 10024438 DOI: 10.1006/jmbi.1998.2510] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial plasmids with two origins of replication in convergent orientation are frequently knotted in vivo. The knots formed are localised within the newly replicated DNA regions. Here, we analyse DNA knots tied within replication bubbles of such plasmids, and observe that the knots formed show predominantly positive signs of crossings. We propose that helical winding of replication bubbles in vivo leads to topoisomerase-mediated formation of knots on partially replicated DNA molecules.
Collapse
Affiliation(s)
- J M Sogo
- ETH-Hönggerberg, Zürich, CH-8093, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Khodursky AB, Cozzarelli NR. The mechanism of inhibition of topoisomerase IV by quinolone antibacterials. J Biol Chem 1998; 273:27668-77. [PMID: 9765303 DOI: 10.1074/jbc.273.42.27668] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase IV (Topo IV) is a mediator of quinolone toxicity in bacteria. In this work, we demonstrate that norfloxacin, a model quinolone, converts Escherichia coli Topo IV into a poisonous adduct on DNA as opposed to inhibiting topoisomerase activity. Norfloxacin inhibition of Topo IV induces a slow decline in DNA synthesis that parallels cell death. Treatment of cells with a lethal concentration of the antibacterial did not block chromosome segregation, the phenotype of catalytic inhibition of Topo IV. Instead, norfloxacin causes DNA damage, as evidenced by the induction of the SOS pathway for DNA repair; the increase in susceptibility to the drug by mutations in genes for DNA repair pathways including recA, recB, and uvrD; and the efficient detergent-induced linearization of plasmid DNA in drug-treated cells. Wild-type and drug-resistant alleles of Topo IV are co-dominant, but we find that mutations in recA, seqA, or gyrB result in unconditional dominance of the sensitive allele, the characteristic of a poisoning mode of inhibition. These mutations either compromise chromosome integrity or force Topo IV to play a more active role in DNA unlinking in front of the replication fork. We interpret our results in terms of distinct but complementary roles of Topo IV and gyrase in DNA replication.
Collapse
Affiliation(s)
- A B Khodursky
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
47
|
Levine C, Hiasa H, Marians KJ. DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:29-43. [PMID: 9748489 DOI: 10.1016/s0167-4781(98)00126-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA gyrase and topoisomerase IV are the two type II topoisomerases present in bacteria. Though clearly related, based on amino acid sequence similarity, they each play crucial, but distinct, roles in the cell. Gyrase is involved primarily in supporting nascent chain elongation during replication of the chromosome, whereas topoisomerase IV separates the topologically linked daughter chromosomes during the terminal stage of DNA replication. These different roles can be attributed to differences in the biochemical properties of the two enzymes. The biochemical activities, physiological roles, and drug sensitivities of the enzymes are reviewed.
Collapse
Affiliation(s)
- C Levine
- Graduate Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, NY, USA
| | | | | |
Collapse
|
48
|
Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli NR. The structure of supercoiled intermediates in DNA replication. Cell 1998; 94:819-27. [PMID: 9753328 DOI: 10.1016/s0092-8674(00)81740-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the structure of replication intermediates accumulated by Tus-induced arrest of plasmid DNA replication at termination sites. For intermediates generated both in vitro with purified components and in vivo, superhelical stress is distributed throughout the entire partially replicated molecule; daughter DNA segments are wound around each other, and the unreplicated region is supercoiled. Thus, unlinking of parental DNA strands by topoisomerases can be carried out both behind and in front of the replication fork. We explain why previous studies with prokaryotic and eukaryotic replication intermediates discerned only supercoiling in the unreplicated portion.
Collapse
Affiliation(s)
- B J Peter
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
In bacteria, DNA supercoil movement is restricted to subchromosomal regions or 'domains.' To elucidate the nature of domain boundaries, we analysed reaction kinetics for gammadelta site-specific resolution in six chromosomal intervals ranging in size from 14 to 90 kb. In stationary cultures of Salmonella typhimurium, resolution kinetics were rapid for both short and long intervals, suggesting that random stationary barriers occur with a 30% probability at approximately 80 kb intervals along DNA. To test the biochemical nature of domain barriers, a genetic screen was used to look for mutants with small domains. Rare temperature-sensitive alleles of DNA gyrase and Topo IV (the two essential type II topoisomerases) had more supercoil barriers than wild-type strains in all growth states. The most severe gyrase mutants were found to have twice as many barriers in growing cells as wild type throughout a 90 kb interval of the chromosome. We propose that knots and tangles in duplex DNA restrain supercoil diffusion in living bacteria.
Collapse
MESH Headings
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- DNA Topoisomerase IV
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/metabolism
- Genes, Bacterial
- Kinetics
- Models, Biological
- Mutation
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
Collapse
Affiliation(s)
- P Staczek
- Department of Biochemistry, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
50
|
Laurie B, Katritch V, Sogo J, Koller T, Dubochet J, Stasiak A. Geometry and physics of catenanes applied to the study of DNA replication. Biophys J 1998; 74:2815-22. [PMID: 9635735 PMCID: PMC1299622 DOI: 10.1016/s0006-3495(98)77988-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The concept of ideal geometric configurations was recently applied to the classification and characterization of various knots. Different knots in their ideal form (i.e., the one requiring the shortest length of a constant-diameter tube to form a given knot) were shown to have an overall compactness proportional to the time-averaged compactness of thermally agitated knotted polymers forming corresponding knots. This was useful for predicting the relative speed of electrophoretic migration of different DNA knots. Here we characterize the ideal geometric configurations of catenanes (called links by mathematicians), i.e., closed curves in space that are topologically linked to each other. We demonstrate that the ideal configurations of different catenanes show interrelations very similar to those observed in the ideal configurations of knots. By analyzing literature data on electrophoretic separations of the torus-type of DNA catenanes with increasing complexity, we observed that their electrophoretic migration is roughly proportional to the overall compactness of ideal representations of the corresponding catenanes. This correlation does not apply, however, to electrophoretic migration of certain replication intermediates, believed up to now to represent the simplest torus-type catenanes. We propose, therefore, that freshly replicated circular DNA molecules, in addition to forming regular catenanes, may also form hemicatenanes.
Collapse
|