1
|
Raciti L, Raciti G, Ammendolia A, de Sire A, Onesta MP, Calabrò RS. Improving Spasticity by Using Botulin Toxin: An Overview Focusing on Combined Approaches. Brain Sci 2024; 14:631. [PMID: 39061372 PMCID: PMC11274891 DOI: 10.3390/brainsci14070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Spasticity is a very common sign in the neurological field. It can be defined as "a motor disorder marked by a velocity-dependent increase in muscle tone or tonic stretch reflexes" associated with hypertonia. It leads to a high risk of limb deformities and pain that prejudices residual motor function, impairing quality of life". The treatment of spasticity depends on its severity and its location and, in general, it is based on rehabilitation, oral therapies (the gamma-aminobutyric acid b agonist baclofen) and injectable medications (i.e., botulin toxins, acting on polysynaptic reflex mechanisms). The botulin toxin type A (BoNT-A) injection has been effectively used to improve different types of spasticity. However, when BoNT-A is not sufficient, a combination of nonpharmacological approaches could be attempted. Therefore, additional intervention, such as conventional physical therapy by itself or further combined with robotic gait training, may be needed. Indeed, it has been shown that combination of BoNT-A and robotics has a positive effect on activity level and upper limb function in patients with stroke, including those in the chronic phase. The aim of this review is to evaluate the efficacy of pharmacological or nonpharmacological treatment in combination with BoNT-A injections on spasticity. The combined therapy of BoNT with conventional or adjunct activities or robot-assisted training, especially with end-effectors, is a valid tool to improve patients' performance and outcomes. The combined strategies might rise the toxin's effect, lowering its dosages of botulinum and reducing side effects and costs.
Collapse
Affiliation(s)
- Loredana Raciti
- Unità Spinale Unipolare, AO Cannizzaro, 98102 Catania, Italy; (L.R.); (M.P.O.)
| | - Gianfranco Raciti
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy; (G.R.); (A.A.); (A.d.S.)
| | - Maria Pia Onesta
- Unità Spinale Unipolare, AO Cannizzaro, 98102 Catania, Italy; (L.R.); (M.P.O.)
| | | |
Collapse
|
2
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects.
Novel BoNTs are being discovered owing to next generation sequencing, but their
biologic and pharmacological properties remain largely unknown. The molecular
structure of the large protein complexes that the toxin forms with accessory
proteins, which are included in some BoNT type A1 and B1 pharmacological
preparations, have been determined. By far the largest effort has been dedicated to
the testing and validation of BoNTs as therapeutic agents in an ever increasing
number of applications, including pain therapy. BoNT type A1 has been also exploited
in a variety of cosmetic treatments, alone or in combination with other agents, and
this specific market has reached the size of the one dedicated to the treatment of
medical syndromes. The pharmacological properties and mode of action of BoNTs have
shed light on general principles of neuronal transport and protein-protein
interactions and are stimulating basic science studies. Moreover, the wide array of
BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed
with specific properties suggest novel uses in therapeutics with increasing
disease/symptom specifity. These recent developments are reviewed here to provide an
updated picture of the biologic mechanism of action of BoNTs, of their increasing use
in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
3
|
Bloc A, Bancila V, Israël M, Dunant Y. Reconstitution of mediatophore-supported quantal acetylcholine release. Metab Brain Dis 2000; 15:1-16. [PMID: 10885537 DOI: 10.1007/bf02680010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Synaptic transmission of a nerve impulse is an extremely rapid event relying on transfer of brief chemical impulses from one cell to another. This transmission is dependent upon Ca2+ and known to be quantal, which led to the widely accepted vesicular hypothesis of neurotransmitter release. However, at least in the case of rapid synaptic transmission the hypothesis has been found difficult to reconcile with a number of observations. In this article, we shall review data from experiments dealing with reconstitution of quantal and Ca2+-dependent acetylcholine release in: i) proteoliposomes, ii) Xenopus oocytes, and iii) release-deficient cell lines. In these three experimental models, release is dependent on the expression of the mediatophore, a protein isolated from the plasma membrane of cholinergic nerve terminals of the Torpedo electric organ. We shall discuss the role of mediatophore in quantal acetylcholine release, its possible involvement in morphological changes affecting presynaptic membrane during the release, and its interactions with others proteins of the cholinergic nerve terminal.
Collapse
Affiliation(s)
- A Bloc
- Department of Pharmacology, Centre Médical Universitaire, Genève, Switzerland.
| | | | | | | |
Collapse
|
4
|
Abstract
The principal electrodiagnostic feature of infant botulism, an incremental response on high rates of repetitive nerve stimulation, has variable sensitivity and may not always be useful as a diagnostic test given the vagaries of test timing and severity of illness. We report the use of stimulation single fiber EMG (S-SFEMG) in making this clinical diagnosis. Four infants between 1 and 5 months of age presented with rapidly progressive bulbar and limb weakness, internal and external ophthalmoplegia, areflexia, and compromised ventilation. Incremental response with high-rate repetitive nerve stimulation and a typical clinical course for infant botulism confirmed the diagnosis in all; stool toxin studies were positive for type B botulinum in 2 of the 3 cases in which they were obtained. S-SFEMG was performed by surface stimulation of median and ulnar nerves and recording with a single fiber needle in the thenar, hypothenar, or first dorsal interosseous muscles. A total of eight single fiber recordings were studied at rates of 2, 5, 10, and 20 Hz. All single fibers studies showed an improvement with higher rates of stimulation, beginning at 10 Hz and peaking at 20 Hz. Compared to baseline study at 2 Hz (100%), the mean percent changes in jitter at 5, 10, and 20 Hz were 109, 60, and 47, respectively. This is the first report of the usefulness of S-SFEMG in the diagnosis of infant botulism.
Collapse
Affiliation(s)
- V Chaudhry
- Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
5
|
Bouron A, Chatton JY. Acute application of the tricyclic antidepressant desipramine presynaptically stimulates the exocytosis of glutamate in the hippocampus. Neuroscience 1999; 90:729-36. [PMID: 10218774 DOI: 10.1016/s0306-4522(98)00480-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tricyclic antidepressants (e.g., imipramine, desipramine) are currently used in the treatment of mood disorders such as depression. At the cellular level they inhibit the re-uptake of the exocytosed monoamines serotonin and noradrenaline. However, they also stimulate phospholipase C activity and the production of the second messenger inositol 1,4,5-trisphosphate. Since phospholipase C activation can also lead to the production of the protein kinase C activator diacylglycerol, we have undertaken experiments to see whether acutely applied desipramine could change the synaptic strength of neurons in a protein kinase C-dependent manner. Experiments performed with cultured hippocampal neurons dissociated from neonatal rats revealed that desipramine rapidly enhanced the spontaneous vesicular release of glutamate. This was observed by measuring the frequency of tetrodotoxin-resistant spontaneous excitatory postsynaptic currents. Analysis of amplitude distribution histograms indicated a presynaptic site of action. The protein kinase inhibitor staurosporine and down-regulation of protein kinase C activity greatly reduced the desipramine-dependent enhancement of the frequency of tetrodotoxin-resistant spontaneous excitatory postsynaptic currents. This presynaptic modulation requires SNARE proteins because cleavage of SNAP-25 with the botulinum neurotoxin A strongly reduced the desipramine-induced glutamate release. Thus, acute applications of desipramine stimulated the ongoing neurotransmitter release pathway, probably by activating protein kinase C. Our data indicate that tricyclic antidepressant drugs not only act on serotoninergic and/or noradrenergic cells but can also modify the activity of glutamatergic neurons.
Collapse
Affiliation(s)
- A Bouron
- Department of Pharmacology, University of Bern, Switzerland
| | | |
Collapse
|
6
|
McKinney RA, Capogna M, Dürr R, Gähwiler BH, Thompson SM. Miniature synaptic events maintain dendritic spines via AMPA receptor activation. Nat Neurosci 1999; 2:44-9. [PMID: 10195179 DOI: 10.1038/4548] [Citation(s) in RCA: 427] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the influence of synaptically released glutamate on postsynaptic structure by comparing the effects of deafferentation, receptor antagonists and blockers of glutamate release in hippocampal slice cultures. CA1 pyramidal cell spine density and length decreased after transection of Schaffer collaterals and after application of AMPA receptor antagonists or botulinum toxin to unlesioned cultures. Loss of spines induced by lesion or by botulinum toxin was prevented by simultaneous AMPA application. Tetrodotoxin did not affect spine density. Synaptically released glutamate thus exerts a trophic effect on spines by acting at AMPA receptors. We conclude that AMPA receptor activation by spontaneous vesicular glutamate release is sufficient to maintain dendritic spines.
Collapse
Affiliation(s)
- R A McKinney
- Brain Research Institute, University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
7
|
6.10 Bacterial Exotoxins. J Microbiol Methods 1998. [DOI: 10.1016/s0580-9517(08)70291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. J Neurosci 1997. [PMID: 9295365 DOI: 10.1523/jneurosci.17-19-07190.1997] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Botulinum (BoNT/A-G) and tetanus toxins (TeNT) are zinc endopeptidases that cleave proteins associated with presynaptic terminals (SNAP-25, syntaxin, or VAMP/synaptobrevin) and block neurotransmitter release. Treatment of hippocampal slice cultures with BoNT/A, BoNT/C, BoNT/E, or TeNT prevented the occurrence of spontaneous or miniature EPSCs (sEPSCs or mEPSCs) as well as the [Ca2+]o-independent increase in their frequency induced by phorbol ester, 0.5 nM alpha-latrotoxin, or sucrose. [Ca2+]o-independent and -dependent release thus requires that the target proteins of clostridial neurotoxins be uncleaved. In contrast, significant increases in mEPSC frequency were produced in BoNT-treated, but not TeNT-treated, cultures by application of the Ca2+ ionophore ionomycin in the presence of 10 mM [Ca2+]o. The frequency of sEPSCs was increased in BoNT-treated, but not TeNT-treated, cultures by increasing [Ca2+]o from 2.8 to 5-10 mM or by applying 5 mM Sr2+. Large Ca2+ and Sr2+ influxes thus can rescue release after BoNT treatment, albeit less than in control cultures. The nature of the toxin-induced modification of Ca2+-dependent release was assessed by recordings from monosynaptically coupled CA3 cell pairs. The paired-pulse ratio of unitary EPSCs evoked by two presynaptic action potentials in close succession was 0.5 in control cultures, but it was 1.4 and 1.2 in BoNT/A- or BoNT/C-treated cultures when recorded in 10 mM [Ca2+]o. Log-log plots of unitary EPSC amplitude versus [Ca2+]o were shifted toward higher [Ca2+]o in BoNT/A- or BoNT/C-treated cultures, but their slope was unchanged and the maximal EPSC amplitudes were reduced. We conclude that BoNTs reduce the Ca2+ sensitivity of the exocytotic machinery and the number of quanta released.
Collapse
|
9
|
Cellular and Molecular Mode of Action of Botulinum and Tetanus Neurotoxins. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2590(08)60190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|