Sewall SL, Cooney RR, Anderson KEH, Dias EA, Sagar DM, Kambhampati P. State-resolved studies of biexcitons and surface trapping dynamics in semiconductor quantum dots.
J Chem Phys 2009;
129:084701. [PMID:
19044835 DOI:
10.1063/1.2971181]
[Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biexcitons in strongly confined, colloidal CdSe quantum dots were investigated with excitonic state selectivity combined with 10 fs temporal precision. Within the first 50 fs, the first excited state of the biexciton was observed. By 100 ps, mixed character biexcitons were observed, comprised of a core exciton and a surface trapped exciton. The size dependence of the biexciton binding energies is reported for these specific biexcitons. Analysis of the spectral signatures of each biexcitonic state yields a quantitative measure of enhanced excited state trapping rates at the surface of the quantum dots. By comparing the biexcitonic signals to the state-filling signals, we show that it is primarily the holes which are trapped at the interface on the 100 ps time scale.
Collapse