1
|
Oliveira Santos S, Tack N, Su Y, Cuenca-Jiménez F, Morales-Lopez O, Gomez-Valdez PA, Wilhelmus MM. Pleobot: a modular robotic solution for metachronal swimming. Sci Rep 2023; 13:9574. [PMID: 37311777 DOI: 10.1038/s41598-023-36185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Metachronal propulsion is widespread in aquatic swarming organisms to achieve performance and maneuverability at intermediate Reynolds numbers. Studying only live organisms limits our understanding of the mechanisms driving these abilities. Thus, we present the design, manufacture, and validation of the Pleobot-a unique krill-inspired robotic swimming appendage constituting the first platform to study metachronal propulsion comprehensively. We combine a multi-link 3D printed mechanism with active and passive actuation of the joints to generate natural kinematics. Using force and fluid flow measurements in parallel with biological data, we show the link between the flow around the appendage and thrust. Further, we provide the first account of a leading-edge suction effect contributing to lift during the power stroke. The repeatability and modularity of the Pleobot enable the independent manipulation of particular motions and traits to test hypotheses central to understanding the relationship between form and function. Lastly, we outline future directions for the Pleobot, including adapting morphological features. We foresee a broad appeal to a wide array of scientific disciplines, from fundamental studies in ecology, biology, and engineering, to developing new bio-inspired platforms for studying oceans across the solar system.
Collapse
Affiliation(s)
- Sara Oliveira Santos
- Center for Fluid Mechanics, School of Engineering, Brown University, Providence, 02912, USA
| | - Nils Tack
- Center for Fluid Mechanics, School of Engineering, Brown University, Providence, 02912, USA
| | - Yunxing Su
- Center for Fluid Mechanics, School of Engineering, Brown University, Providence, 02912, USA
| | - Francisco Cuenca-Jiménez
- Circuito Interior s/n, Engineering, Universidad Nacional Autónoma de México, 04510, Coyoacán, Mexico
| | - Oscar Morales-Lopez
- Circuito Interior s/n, Engineering, Universidad Nacional Autónoma de México, 04510, Coyoacán, Mexico
| | - P Antonio Gomez-Valdez
- Circuito Interior s/n, Engineering, Universidad Nacional Autónoma de México, 04510, Coyoacán, Mexico
| | - Monica M Wilhelmus
- Center for Fluid Mechanics, School of Engineering, Brown University, Providence, 02912, USA.
| |
Collapse
|
2
|
Flammang BE. Bioinspired Design in Research: Evolution as Beta-Testing. Integr Comp Biol 2022; 62:icac134. [PMID: 35933125 DOI: 10.1093/icb/icac134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modern fishes represent over 400 million years of evolutionary processes that, in many cases, resulted in selection for phenotypes with particular performance advantages. While this certainly occurred without a trajectory for optimization, it cannot be denied that some morphologies allow organisms to be more effective than others at tasks like evading predation, securing food, and ultimately passing on their genes. In this way, evolution generates a series of iterative prototypes with varying but measurable success in accomplishing objectives. Therefore, careful analysis of fundamental properties underlying biological phenomena allow us to fast-track development of bioinspired technologies aiming to accomplish similar objectives. At the same time, bioinspired designs can be a way to explore evolutionary processes, by better understanding the performance space within which a given morphology operates. Through strong interdisciplinary collaborations, we can develop novel bioinspired technologies that not only excel as robotic devices but that teach us something about biology and the rules of life in the process.
Collapse
Affiliation(s)
- Brooke E Flammang
- Department of Biological Sciences, New Jersey Institute of Technology, 323 Dr. Martin Luther King, Jr. Blvd., 07102, NJ, USA
| |
Collapse
|
3
|
Nose F, Sueoka Y, Nakanishi D, Sugimoto Y, Osuka K. Design of Fin-Curvature-Based Feedback Controller for Efficient Swimming. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p0955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past few decades, biologists and engineers have attempted to elucidate the swimming mechanism of fish and developed a fish-like robot to perform fast swimming in water. Such a robot will have wide applicability in investigations and exploration in the sea. There have been many studies on fish-type robots; however, the propulsion efficiency of the introduced robots is far from that of the actual fish. The main reason is that the robot controller for generating motions is conventionally designed by trial and error, and little attention has been placed on designing a motion controller that matches the body structure of a real fish. In this paper, we present an approach that uses fin-curvature-based feedback to design a motion controller. A swimming robot composed of a body with two actuated joints and a flexible tail fin is developed. After examining the relationship between the swimming speed and tail fin curvature in feedforward (open-loop) system experiments, we propose to reflect the tail fin curvature to the actuation inputs (phase difference between the two cyclic oscillations), which will perform the efficient swimming motion. Further, the results show that implementing the proposed feedback controller in a fish-type robot makes it swim similar to a real fish. In addition, the proposed controller functions to find inappropriate actuation according to the body structure.
Collapse
|
4
|
Abstract
Abstract
Based on the characteristics of high-frequency swing during fast swimming of fish, this paper designs a bionic fish-driven joint based on electromagnetic drive to achieve high-frequency swing. Aiming at the characteristic parameters of high-frequency swing control, the Fourier transform is used to separate the characteristic parameters and then compared the driving accuracy of the joints in open-loop and closed-loop. The comparison results show that the closed-loop control is performed after Fourier transform. Under the same driving conditions, the closed-loop control method can improve the joint driving accuracy. Then a bionic fish robot composed of three joints is designed according to this method and Kane method is used to model it dynamically and combined with the central pattern generator control method to complete model simulation and related experiments. The experimental results show that the bionic fish prototype can swim faster under high-frequency swing under electromagnetically driven joints.
Collapse
|
5
|
Giammona FF. Form and function of the caudal fin throughout the phylogeny of fishes. Integr Comp Biol 2021; 61:550-572. [PMID: 34114010 DOI: 10.1093/icb/icab127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Fishes are the longest persisting living vertebrates and as such, display an incredible array of diversity. Variation in the tail, or caudal fin, is often a reflection of a fish's environment, and affects movement, predation, defense, and reproduction. Previous literature has discussed many aspects of caudal fin form and function in particular taxonomic groups; however, no previous work has synthesized these studies in order to detail how the caudal fin is structured, and what purpose this structure serves, throughout the phylogeny of fishes. This review examines the caudal fin throughout the main lineages of fish evolution, and highlights where changes in shape and usage have occurred. Such novelties in form and function tend to have far-reaching evolutionary consequences. Through integration of past and present work, this review creates a coherent picture of caudal fin evolution. Patterns and outliers that demonstrate how form and function of this appendage are intertwined can further inform hypotheses that fill critical gaps in knowledge concerning the caudal fin.
Collapse
|
6
|
Gerullis P, Reinel CP, Schuster S. Archerfish coordinate fin maneuvers with their shots. J Exp Biol 2021; 224:jeb.233718. [PMID: 33785500 DOI: 10.1242/jeb.233718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022]
Abstract
Archerfish down a variety of aerial prey from a range of distances using water jets that they adjust to the size and distance of their prey. We describe here that characteristic rapid fin maneuvers, most notably of the pectoral and pelvic fins, are precisely coordinated with the release of the jet. We discovered these maneuvers in two fish, the jets of which had been characterized in detail, that had been trained to shoot from fixed positions at targets at different heights and that remained stable during their shots. Based on the findings in these individuals, we examined shooting-associated fin movement in 28 further archerfish of two species that could shoot from freely chosen positions at targets at different heights. Slightly before the onset of the water jet, at a time when the shooter remains stable, the pectoral fins of all shooters switched from asynchronous low-amplitude beating to a synchronized rapid forward flap. The onset and duration of the forward and subsequent backward flap were robust across all individuals and shooting angles but depended on target height. The pelvic fins were slowly adducted at the start of the jet and stopped moving after its release. All other fins also showed a characteristic sequence of activation, some starting ∼0.5 s before the shot. Our findings suggest that shooting-related fin maneuvers are needed to stabilize the shooter, and that these maneuvers are an important component in the precise and powerful far-distance shooting in archerfish.
Collapse
Affiliation(s)
- Peggy Gerullis
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Caroline P Reinel
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Boute PG, Van Wassenbergh S, Stamhuis EJ. Modulating yaw with an unstable rigid body and a course-stabilizing or steering caudal fin in the yellow boxfish ( Ostracion cubicus). ROYAL SOCIETY OPEN SCIENCE 2020; 7:200129. [PMID: 32431903 PMCID: PMC7211845 DOI: 10.1098/rsos.200129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
Despite that boxfishes have a rigid carapace that restricts body undulation, they are highly manoeuvrable and manage to swim with remarkably dynamic stability. Recent research has indicated that the rigid body shape of boxfishes shows an inherently unstable response in its rotations caused by course-disturbing flows. Hence, any net stabilizing effect should come from the fishes' fins. The aim of the current study was to determine the effect of the surface area and orientation of the caudal fin on the yaw torque exerted on the yellow boxfish, Ostracion cubicus, a square cross-sectional shaped species of boxfish. Yaw torques quantified in a flow tank using a physical model with an attachable closed or open caudal fin at different body and tail angles and at different water flow speeds showed that the caudal fin is crucial for controlling yaw. These flow tank results were confirmed by computational fluid dynamics simulations. The caudal fin acts as both a course-stabilizer and rudder for the naturally unstable rigid body with regard to yaw. Boxfishes seem to use the interaction of the unstable body and active changes in the shape and orientation of the caudal fin to modulate manoeuvrability and stability.
Collapse
Affiliation(s)
- Pim G. Boute
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Sam Van Wassenbergh
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Eize J. Stamhuis
- Department of Ocean Ecosystems, Energy and Sustainability Research Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Suresh SA, Kerst CF, Cutkosky MR, Hawkes EW. Spatially variant microstructured adhesive with one-way friction. J R Soc Interface 2020; 16:20180705. [PMID: 30958166 DOI: 10.1098/rsif.2018.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Surface microstructures in nature enable diverse and intriguing properties, from the iridescence of butterfly wings to the hydrophobicity of lotus leaves to the controllable adhesion of gecko toes. Many artificial analogues exist; however, there is a key characteristic of the natural materials that is largely absent from the synthetic versions-spatial variation. Here we show that exploiting spatial variation in the design of one class of synthetic microstructure, gecko-inspired adhesives, enables one-way friction, an intriguing property of natural gecko adhesive. When loaded along a surface in the preferred direction, our adhesive material supports forces 100 times larger than when loaded in the reverse direction, representing an asymmetry significantly larger than demonstrated in spatially uniform adhesives. Our study suggests that spatial variation has the potential to advance artificial microstructures, helping to close the gap between synthetic and natural materials.
Collapse
Affiliation(s)
- Srinivasan A Suresh
- 1 Department of Mechanical Engineering, Stanford University , Stanford, CA 94305 , USA
| | - Capella F Kerst
- 1 Department of Mechanical Engineering, Stanford University , Stanford, CA 94305 , USA
| | - Mark R Cutkosky
- 1 Department of Mechanical Engineering, Stanford University , Stanford, CA 94305 , USA
| | - Elliot W Hawkes
- 2 Department of Mechanical Engineering, University of California , Santa Barbara, CA 93106 , USA
| |
Collapse
|
9
|
Fish FE. Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. BIOINSPIRATION & BIOMIMETICS 2020; 15:025001. [PMID: 31751980 DOI: 10.1088/1748-3190/ab5a34] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Robotic systems are becoming more ubiquitous, whether on land, in the air, or in water. In the aquatic realm, aquatic drones including ROVs (remotely operated vehicles) and AUVs (autonomous underwater vehicles) have opened new opportunities to investigate the ocean depths. However, these technologies have limitations related to shipboard support, programing, and functionality in complex marine environments. A new form of AUV is being developed to become operational. These drones are based on animal designs and capabilities. Biological AUVs (BAUVs) promise to improve performance in the varied environments of the ocean. Comparison of animal swimming performance with conventional AUVs and BAUVs demonstrates that natural systems still have swimming capabilities beyond the current state of AUV technology. However, the performances of aquatic animals with respect to swimming speed, efficiency, maneuverability, and stealth can serve as benchmarks to direct the development of bio-inspired AUV technology with enhanced capabilities.
Collapse
Affiliation(s)
- Frank E Fish
- Department of Biology, West Chester University, West Chester, PA, United States of America
| |
Collapse
|
10
|
Zhu J, White C, Wainwright DK, Di Santo V, Lauder GV, Bart-Smith H. Tuna robotics: A high-frequency experimental platform exploring the performance space of swimming fishes. Sci Robot 2019; 4:4/34/eaax4615. [PMID: 33137777 DOI: 10.1126/scirobotics.aax4615] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/20/2019] [Indexed: 11/02/2022]
Abstract
Tuna and related scombrid fishes are high-performance swimmers that often operate at high frequencies, especially during behaviors such as escaping from predators or catching prey. This contrasts with most fish-like robotic systems that typically operate at low frequencies (< 2 hertz). To explore the high-frequency fish swimming performance space, we designed and tested a new platform based on yellowfin tuna (Thunnus albacares) and Atlantic mackerel (Scomber scombrus). Body kinematics, speed, and power were measured at increasing tail beat frequencies to quantify swimming performance and to study flow fields generated by the tail. Experimental analyses of freely swimming tuna and mackerel allow comparison with the tuna-like robotic system. The Tunabot (255 millimeters long) can achieve a maximum tail beat frequency of 15 hertz, which corresponds to a swimming speed of 4.0 body lengths per second. Comparison of midline kinematics between scombrid fish and the Tunabot shows good agreement over a wide range of frequencies, with the biggest discrepancy occurring at the caudal fin, primarily due to the rigid propulsor used in the robotic model. As frequency increases, cost of transport (COT) follows a fish-like U-shaped response with a minimum at ~1.6 body lengths per second. The Tunabot has a range of ~9.1 kilometers if it swims at 0.4 meter per second or ~4.2 kilometers at 1.0 meter per second, assuming a 10-watt-hour battery pack. These results highlight the capabilities of high-frequency biological swimming and lay the foundation to explore a fish-like performance space for bio-inspired underwater vehicles.
Collapse
Affiliation(s)
- J Zhu
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA
| | - C White
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA
| | - D K Wainwright
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - V Di Santo
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - G V Lauder
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - H Bart-Smith
- Bio-Inspired Engineering Research Laboratory (BIERL), Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22903, USA.
| |
Collapse
|
11
|
Shan Y, Bayiz YE, Cheng B. Efficient thrust generation in robotic fish caudal fins using policy search. IET CYBER-SYSTEMS AND ROBOTICS 2019. [DOI: 10.1049/iet-csr.2018.0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yixi Shan
- Department of Mechanical Engineering The Pennsylvania State University, State College USA
| | - Yagiz E. Bayiz
- Department of Mechanical Engineering The Pennsylvania State University, State College USA
| | - Bo Cheng
- Department of Mechanical Engineering The Pennsylvania State University, State College USA
| |
Collapse
|
12
|
Behbahani SB, Tan X. Design and Modeling of Flexible Passive Rowing Joint for Robotic Fish Pectoral Fins. IEEE T ROBOT 2016. [DOI: 10.1109/tro.2016.2593452] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Daghooghi M, Borazjani I. Self-propelled swimming simulations of bio-inspired smart structures. BIOINSPIRATION & BIOMIMETICS 2016; 11:056001. [PMID: 27501748 DOI: 10.1088/1748-3190/11/5/056001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents self-propelled swimming simulations of a foldable structure, whose folded configuration is a box. For self-locomotion through water the structure unfolds and undulates. To guide the design of the structure and understand how it should undulate to achieve either highest speed or maximize efficiency during locomotion, several kinematic parameters were systematically varied in the simulations: the wave type (standing wave versus traveling wave), the smoothness of undulations (smooth undulations versus undulations of rigid links), the mode of undulations (carangiform: mackerel-like versus anguilliform: eel-like undulations), and the maximum amplitude of undulations. We show that the swimmers with standing wave are slow and inefficient because they are not able to produce thrust using the added-mass mechanism. Among the tested types of undulation at low Reynolds number (Re) regime of [Formula: see text] (Strouhal number of about 1.0), structures that employ carangiform undulations can swim faster, whereas anguilliform swimmers are more economic, i.e., using less power they can swim a longer distance. Another finding of our simulations is that structures which are made of rigid links are typically less efficient (lower propulsive and power efficiencies and also lower swimming speed) compared with smoothly undulating ones because a higher added-mass force is generated by smooth undulations. The wake of all the swimmers bifurcated at the low Re regime because of the higher lateral relative to the axial velocity (high Strouhal number) that advects the vortices laterally creating a double row of vortices in the wake. In addition, we show that the wake cannot be used to predict the performance of the swimmers because the net force in each cycle is zero for self-propelled bodies and the pressure term is not negligible compared to the other terms.
Collapse
Affiliation(s)
- Mohsen Daghooghi
- Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
14
|
Ren Z, Yang X, Wang T, Wen L. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed. BIOINSPIRATION & BIOMIMETICS 2016; 11:016008. [PMID: 26855405 DOI: 10.1088/1748-3190/11/1/016008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent advances in understanding fish locomotion with robotic devices have included the use of biomimetic flapping based and fin undulatory locomotion based robots, treating two locomotions separately from each other. However, in most fish species, patterns of active movements of fins occur in concert with the body undulatory deformation during swimming. In this paper, we describe a biomimetic robotic caudal fin programmed with individually actuated fin rays to mimic the fin motion of the Bluegill Sunfish (Lepomis macrochirus) and coupled with heave and pitch oscillatory motions adding to the robot to mimic the peduncle motion which is derived from the undulatory fish body. Multiple-axis force and digital particle image velocimetry (DPIV) experiments from both the vertical and horizontal planes behind the robotic model were conducted under different motion programs and flow speeds. We found that both mean thrust and lift could be altered by changing the phase difference (φ) from 0° to 360° between the robotic caudal peduncle and the fin ray motion (spanning from 3 mN to 124 mN). Notably, DPIV results demonstrated that the caudal fin generated multiple wake flow patterns in both the vertical and horizontal planes by varying φ. Vortex jet angle and thrust impulse also varied significantly both in these two planes. In addition, the vortex shedding position along the spanwise tail direction could be shifted around the mid-sagittal position between the upper and lower lobes by changing the phase difference. We hypothesize that the fish caudal fin may serve as a flexible vectoring propeller during swimming and may be critical for the high maneuverability of fish.
Collapse
Affiliation(s)
- Ziyu Ren
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Witt WC, Wen L, Lauder GV. Hydrodynamics of C-Start Escape Responses of Fish as Studied with Simple Physical Models. Integr Comp Biol 2015; 55:728-39. [PMID: 25920507 DOI: 10.1093/icb/icv016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the most-studied unsteady locomotor behaviors exhibited by fishes is the c-start escape response. Although the kinematics of these responses have been studied extensively and two well-defined kinematic stages have been documented, only a few studies have focused on hydrodynamic patterns generated by fishes executing escape behaviors. Previous work has shown that escape responses by bluegill sunfish generate three distinct vortex rings, each with central orthogonal jet flows, and here we extend this conclusion to two other species: stickleback and mosquitofish. Jet #1 is formed by the tail during Stage 1, and moves in the same direction as Stage-2 movement of the fish, thereby reducing final escape-velocity but also rotating the fish. Jet #2, in contrast, moves approximately opposite to the final direction of the fish's motion and contains the bulk of the total fluid-momentum powering the escape response. Jet #3 forms during Stage 2 in the mid-body region and moves in a direction approximately perpendicular to jets 1 and 2, across the direction of movement of the body. In this study, we used a mechanical controller to impulsively move passively flexible plastic panels of three different stiffnesses in heave, pitch, and heave + pitch motions to study the effects of stiffness on unsteady hydrodynamics of escape. We were able to produce kinematics very similar to those of fish c-starts and also to reproduce the 3-jet hydrodynamic pattern of the c-start using a panel of medium flexural stiffness and the combined heave + pitch motion. This medium-stiffness panel matched the measured stiffness of the near-tail region of fish bodies. This motion also produced positive power when the panel straightened during stage 2 of the escape response. More flexible and stiffer panels resulted in non-biological kinematics and patterns of flow for all motions. The use of simple flexible models with a mechanical controller and program of fish-like motion is a promising approach for studying unsteady behaviors of fish which can be difficult to manipulate experimentally in live animals.
Collapse
Affiliation(s)
- William C Witt
- *Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA; School of Mechanical Engineering and Automation, Beihang University, Beijing, China 100191; Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Li Wen
- *Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA; School of Mechanical Engineering and Automation, Beihang University, Beijing, China 100191; Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - George V Lauder
- *Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA; School of Mechanical Engineering and Automation, Beihang University, Beijing, China 100191; Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|