1
|
Vehlow A, Cordes N. Growth factor receptor and β1 integrin signaling differentially regulate basal clonogenicity and radiation survival of fibroblasts via a modulation of cell cycling. In Vitro Cell Dev Biol Anim 2022; 58:169-178. [PMID: 35194763 PMCID: PMC8901520 DOI: 10.1007/s11626-022-00656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Cell adhesion to extracellular matrix proteins mediates resistance to radio- and chemotherapy by activating integrin signaling. In addition, mutual and cooperative interactions between integrin and growth factor receptor signaling contribute to the cellular radiation response. Here, we investigate to which extend the crosstalk between β1 integrins and growth factor receptor signaling determines the cellular radiation response of fibroblasts by assessing clonogenic survival and cell cycling. By utilizing growth factor signaling competent and either β1 integrin wildtype GD25β1A fibroblasts or β1 integrin mutant, signaling incompetent GD25β1B fibroblasts, we show basal clonogenic survival to depend on growth factor receptor but not integrin signaling. Our data further suggest the cooperation between β1 integrins and growth factor receptors to be critical for enhancing the radiation-induced G2/M cell cycle block leading to improved clonogenic radiation survival. By pharmacological inhibition of EGFR and PI3K, we additionally show that the essential contribution of EGFR signaling to radiogenic G2/M cell cycle arrest depends on the co-activation of the β1 integrin signaling axis, but occurs independent of PI3K. Taken together, elucidation of the signaling circuitry underlying the EGFR/β1 integrin crosstalk may support the development of advanced molecular targeted therapies for radiation oncology.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307, Dresden, Germany. .,Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307, Dresden, Germany. .,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Bautzner Landstr. 400, 01328, Dresden, Germany. .,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany, Im Neuenheimer Feld 280, 69192, Heidelberg, Germany.
| |
Collapse
|
2
|
Xu C, Wang S, Wu Y, Sun X, Yang D, Wang S. Recent advances in understanding the roles of sialyltransferases in tumor angiogenesis and metastasis. Glycoconj J 2021; 38:119-127. [PMID: 33411077 DOI: 10.1007/s10719-020-09967-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023]
Abstract
Abnormal glycosylation is a common characteristic of cancer cells and there is a lot of evidence that glycans can regulate the biological behavior of tumor cells. Sialylation modification, a form of glycosylation modification, plays an important role in cell recognition, cell adhesion and cell signal transduction. Abnormal sialylation on the surface of tumor cells is related to tumor migration and invasion, with abnormal expression of sialyltransferases being one of the main causes of abnormal sialylation. Recent studies provide a better understanding of the importance of the sialyltransferases, and how they influences cancer cell angiogenesis, adhesion and Epithelial-Mesenchymal Transition (EMT). The present review will provide a direction for future studies in determining the roles of sialyltransferases in cancer metastasis, and abnormal sialyltransferases are likely to be potential biomarkers for cancer.
Collapse
Affiliation(s)
- Chunyan Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Yinshuang Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning Province, People's Republic of China.
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Institute of Glycobiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Haeger A, Alexander S, Vullings M, Kaiser FM, Veelken C, Flucke U, Koehl GE, Hirschberg M, Flentje M, Hoffman RM, Geissler EK, Kissler S, Friedl P. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med 2020; 217:e20181184. [PMID: 31658985 PMCID: PMC7037234 DOI: 10.1084/jem.20181184] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer fatalities result from metastatic dissemination and therapy resistance, both processes that depend on signals from the tumor microenvironment. To identify how invasion and resistance programs cooperate, we used intravital microscopy of orthotopic sarcoma and melanoma xenografts. We demonstrate that these tumors invade collectively and that, specifically, cells within the invasion zone acquire increased resistance to radiotherapy, rapidly normalize DNA damage, and preferentially survive. Using a candidate-based approach to identify effectors of invasion-associated resistance, we targeted β1 and αVβ3/β5 integrins, essential extracellular matrix receptors in mesenchymal tumors, which mediate cancer progression and resistance. Combining radiotherapy with β1 or αV integrin monotargeting in invading tumors led to relapse and metastasis in 40-60% of the cohort, in line with recently failed clinical trials individually targeting integrins. However, when combined, anti-β1/αV integrin dual targeting achieved relapse-free radiosensitization and prevented metastatic escape. Collectively, invading cancer cells thus withstand radiotherapy and DNA damage by β1/αVβ3/β5 integrin cross-talk, but efficient radiosensitization can be achieved by multiple integrin targeting.
Collapse
Affiliation(s)
- Anna Haeger
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Stephanie Alexander
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| | - Manon Vullings
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
| | - Fabian M.P. Kaiser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | | | - Uta Flucke
- Department of Pathology, Radboudumc, Nijmegen, Netherlands
| | - Gudrun E. Koehl
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Markus Hirschberg
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Germany
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Edward K. Geissler
- Department of Surgery, Section of Experimental Surgery, University Hospital Regensburg, University of Regensburg, Germany
| | - Stephan Kissler
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboudumc, Nijmegen, Netherlands
- Department of Dermatology, Venerology, and Allergology, University of Würzburg, Germany
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Germany
- Department of Genitourinary Oncology, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Ozpiskin OM, Zhang L, Li JJ. Immune targets in the tumor microenvironment treated by radiotherapy. Am J Cancer Res 2019; 9:1215-1231. [PMID: 30867826 PMCID: PMC6401500 DOI: 10.7150/thno.32648] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy (RT), the major anti-cancer modality for more than half of cancer patients after diagnosis, has the advantage of local tumor control with relatively less systematic side effects comparing to chemotherapy. However, the efficacy of RT is limited by acquired tumor resistance leading to the risks of relapse and metastasis. To further enhance the efficacy of RT, with the renaissances of targeted immunotherapy (TIT), increasing interests are raised on RT combined with TIT including cancer vaccines, T-cell therapy, and antibody-based immune checkpoint blockers (ICB) such as anti-CTLA-4 and anti-PD1/PD-L1. In achieving a significant synergy between RT and TIT, the dynamics of radiation-induced response in tumor cells and stromal cells, especially the cross-talk between tumor cells and immune cells in the irradiated tumor microenvironment (ITME) as highlighted in recent literature are to be elucidated. The abscopal effect refereeing the RT-induced priming function outside of ITME could be compromised by the immune-suppressive factors such as CD47 and PD-L1 on tumor cells and Treg induced or enhanced in the ITME. Cell surface receptors temporally or permanently induced and bioactive elements released from dead cells could serve antigenic source (radiation-associated antigenic proteins, RAAPs) to the host and have functions in immune regulation on the tumor. This review is attempted to summarize a cluster of factors that are inducible by radiation and targetable by antibodies, or have potential to be immune regulators to synergize tumor control with RT. Further characterization of immune regulators in ITME will deepen our understanding of the interplay among immune regulators in ITME and discover new effective targets for the combined modality with RT and TIT.
Collapse
|
5
|
Keam SP, Caramia F, Gamell C, Paul PJ, Arnau GM, Neeson PJ, Williams SG, Haupt Y. The Transcriptional Landscape of Radiation-Treated Human Prostate Cancer: Analysis of a Prospective Tissue Cohort. Int J Radiat Oncol Biol Phys 2017; 100:188-198. [PMID: 29102647 DOI: 10.1016/j.ijrobp.2017.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/29/2017] [Accepted: 09/18/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE The resistance of prostate cancer to radiation therapy (RT) is a significant clinical issue and still largely unable to be guided by patient-specific molecular characteristics. The present study describes the gene expression changes induced in response to RT in human prostate tissue obtained from a prospective tissue acquisition study designed for radiobiology research. METHODS AND MATERIALS A prospective cohort of 5 men with intermediate-risk and clinically localized tumors were treated with high-dose-rate brachytherapy with 2 × 10-Gy fractions. Image-guided transperineal biopsy specimens were taken immediately before and 14 days after the first high-dose-rate brachytherapy fraction. Using genome-wide 3' RNA sequencing on total RNA extracted from 10 biopsy specimens, we obtained quantitative expression data for a median of 13,244 genes. We computed the fold-change information for each gene and extracted high-confidence lists of transcripts with either increased or decreased expression (≥1.5-fold) after radiation in ≥4 of the 5 patients. Several gene ontology analyses were then used to identify functionally enriched pathways. RESULTS The predominant change in response to RT was elevation of the transcript levels, including that of DNA damage binding protein 2 and p21, and collagens, laminins, and integrins. We observed strong upregulation of the p53 pathway, without observable dysregulation of p53 itself. Interstitial remodeling, extracellular matrix proteins, and focal adhesion pathways were also strongly upregulated, as was inflammation. Functional network analysis showed clustering of the changes inherent in apoptosis and programmed cell death, extracellular matrix organization, and immune regulation. CONCLUSIONS In the present prospective study of matched clinical tissues, we successfully recognized known radiation-sensitive transcriptional pathways and identified numerous other novel and significantly altered genes with no current association with RT. These data could be informative in the development of future personalized therapeutic agents.
Collapse
Affiliation(s)
- Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Cristina Gamell
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Piotr J Paul
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gisela Mir Arnau
- Molecular Genomics Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Paul J Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia; Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Ji X, Zhu X, Lu X. Effect of cancer-associated fibroblasts on radiosensitivity of cancer cells. Future Oncol 2017; 13:1537-1550. [PMID: 28685611 DOI: 10.2217/fon-2017-0054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Solid tumors are composed of tumor epithelial cells and the stroma, which are seemingly separate but actually related through cell-cell and cell-matrix interactions. These interactions can promote tumor evolution. Cancer-associated fibroblasts (CAFs) are the most abundant non-neoplastic cells in the stroma and also among the most important cell types interacting with cancer cells. Particularly, cancer cells promote the formation and maintenance of CAFs by secreting various cytokines. The activated CAFs then synthesize a series of growth factors to promote tumor cell growth, invasion and metastasis. More importantly, the presence of CAFs also interferes with therapeutic efficacy, bringing severe challenges to radiotherapy. This review summarizes the effect of CAFs on the radiosensitivity of tumor cells and underscores the need for further studies on CAFs in order to improve the efficacy of antitumor therapy.
Collapse
Affiliation(s)
- Xiaoqin Ji
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xixu Zhu
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Xueguan Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|