1
|
Souza GM, Kretschmer R, Toma GA, de Oliveira AM, Deon GA, Setti PG, Zeni Dos Santos R, Goes CAG, Del Valle Garnero A, Gunski RJ, de Oliveira EHC, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Satellitome analysis on the pale-breasted thrush Turdus leucomelas (Passeriformes; Turdidae) uncovers the putative co-evolution of sex chromosomes and satellite DNAs. Sci Rep 2024; 14:20656. [PMID: 39232109 PMCID: PMC11375038 DOI: 10.1038/s41598-024-71635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Do all birds' sex chromosomes follow the same canonical one-way direction of evolution? We combined cytogenetic and genomic approaches to analyze the process of the W chromosomal differentiation in two selected Passeriform species, named the Pale-breasted Thrush Turdus leucomelas and the Rufous-bellied thrush T. rufiventris. We characterized the full catalog of satellite DNAs (satellitome) of T. leucomelas, and the 10 TleSatDNA classes obtained together with 16 microsatellite motifs were in situ mapped in both species. Additionally, using Comparative Genomic Hybridization (CGH) assays, we investigated their intragenomic variations. The W chromosomes of both species did not accumulate higher amounts of both heterochromatin and repetitive sequences. However, while T. leucomelas showed a heterochromatin-poor W chromosome with a very complex evolutionary history, T. rufiventris showed a small and partially heterochromatic W chromosome that represents a differentiated version of its original autosomal complement (Z chromosome). The combined approach of CGH and sequential satDNA mapping suggest the occurrence of a former W-autosomal translocation event in T. leucomelas, which had an impact on the W chromosome in terms of sequence gains and losses. At the same time, an autosome, which is present in both males and females in a polymorphic state, lost sequences and integrated previously W-specific ones. This putative W-autosomal translocation, however, did not result in the emergence of a multiple-sex chromosome system. Instead, the generation of a neo-W chromosome suggests an unexpected evolutionary trajectory that deviates from the standard canonical model of sex chromosome evolution.
Collapse
Affiliation(s)
- Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | | | | | - Ricardo José Gunski
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, 97307-020, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, PA, 67030-000, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, 66075-110, Brazil
| | - Fabio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller Universität, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
2
|
Toma GA, Sember A, Goes CAG, Kretschmer R, Porto-Foresti F, Bertollo LAC, Liehr T, Utsunomia R, de Bello Cioffi M. Satellite DNAs and the evolution of the multiple X 1X 2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes). Sci Rep 2024; 14:20402. [PMID: 39223262 PMCID: PMC11369246 DOI: 10.1038/s41598-024-70920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | | | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, 07747, Jena, Germany.
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
3
|
Setti PG, Deon GA, Zeni Dos Santos R, Goes CAG, Garnero ADV, Gunski RJ, de Oliveira EHC, Porto-Foresti F, de Freitas TRO, Silva FAO, Liehr T, Utsunomia R, Kretschmer R, de Bello Cioffi M. Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species. BMC Ecol Evol 2024; 24:51. [PMID: 38654159 PMCID: PMC11036779 DOI: 10.1186/s12862-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Analía Del Valle Garnero
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Ricardo José Gunski
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | | | - Fábio Augusto Oliveira Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, 96.010-610, Pelotas, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
4
|
Sales-Oliveira VC, Dos Santos RZ, Goes CAG, Calegari RM, Garrido-Ramos MA, Altmanová M, Ezaz T, Liehr T, Porto-Foresti F, Utsunomia R, Cioffi MB. Evolution of ancient satellite DNAs in extant alligators and caimans (Crocodylia, Reptilia). BMC Biol 2024; 22:47. [PMID: 38413947 PMCID: PMC10900743 DOI: 10.1186/s12915-024-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Crocodilians are one of the oldest extant vertebrate lineages, exhibiting a combination of evolutionary success and morphological resilience that has persisted throughout the history of life on Earth. This ability to endure over such a long geological time span is of great evolutionary importance. Here, we have utilized the combination of genomic and chromosomal data to identify and compare the full catalogs of satellite DNA families (satDNAs, i.e., the satellitomes) of 5 out of the 8 extant Alligatoridae species. As crocodilian genomes reveal ancestral patterns of evolution, by employing this multispecies data collection, we can investigate and assess how satDNA families evolve over time. RESULTS Alligators and caimans displayed a small number of satDNA families, ranging from 3 to 13 satDNAs in A. sinensis and C. latirostris, respectively. Together with little variation both within and between species it highlighted long-term conservation of satDNA elements throughout evolution. Furthermore, we traced the origin of the ancestral forms of all satDNAs belonging to the common ancestor of Caimaninae and Alligatorinae. Fluorescence in situ experiments showed distinct hybridization patterns for identical orthologous satDNAs, indicating their dynamic genomic placement. CONCLUSIONS Alligators and caimans possess one of the smallest satDNA libraries ever reported, comprising only four sets of satDNAs that are shared by all species. Besides, our findings indicated limited intraspecific variation in satellite DNA, suggesting that the majority of new satellite sequences likely evolved from pre-existing ones.
Collapse
Affiliation(s)
- Vanessa C Sales-Oliveira
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | | | | | - Marcelo B Cioffi
- Departamento de Genética E Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
5
|
Khensuwan S, de Menezes Cavalcante Sassi F, Rosa de Moraes RL, Rab P, Liehr T, Supiwong W, Seetapan K, Tanomtong A, Tantisuwichwong N, Arunsang S, Buasriyot P, Tongnunui S, Cioffi MDB. Chromosomes of Asian cyprinid fishes: Novel insight into the chromosomal evolution of Labeoninae (Teleostei, Cyprinidae). PLoS One 2024; 19:e0292689. [PMID: 38324533 PMCID: PMC10849230 DOI: 10.1371/journal.pone.0292689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 02/09/2024] Open
Abstract
The Labeoninae subfamily is a highly diversified but demonstrably monophyletic lineage of cyprinid fishes comprising five tribes and six incertae sedis genera. This widely distributed assemblage contains some 48 genera and around 480 recognized species distributed in freshwaters of Africa and Asia. In this study, the karyotypes and other chromosomal properties of five Labeoninae species found in Thailand Labeo chrysophekadion (Labeonini) and Epalzeorhynchos bicolor, Epalzeorhynchos munense, Henicorhynchus siamensis, Thynnichthys thynnoides (´Osteochilini´) were examined using conventional and molecular cytogenetic protocols. Our results confirmed a diploid chromosome number (2n) invariably 2n = 50, but the ratio of uni- and bi-armed chromosomes was highly variable among their karyotypes, indicating extensive structural chromosomal rearrangements. Karyotype of L. chrysophekadion contained 10m+6sm+20st+14a, 32m+10sm+8st for H. siamensis, 20m+12sm+10st+8a in E. bicolor, 20m+8sm+8st+14a in E. munense, and 18m+24sm+8st in T. thynnoides. Except for H. siamensis, which had four sites of 5S rDNA sites, other species under study had only one chromosome pair with those sites. In contrast, only one pair containing 18S rDNA sites were found in the karyotypes of three species, whereas two sites were found in that of E. bicolor. These cytogenetic patterns indicated that the cytogenomic divergence patterns of these labeonine species largely corresponded to the inferred phylogenetic tree. In spite of the 2n stability, diverse patterns of rDNA and microsatellite distribution as well as their various karyotype structures demonstrated significant evolutionary differentiation of Labeoninae genomes as exemplified in examined species. Labeoninae offers a traditional point of view on the evolutionary forces fostering biological diversity, and the recent findings add new pieces to comprehend the function of structural chromosomal rearrangements in adaption and speciation.
Collapse
Affiliation(s)
- Sudarat Khensuwan
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, Thailand
| | | | - Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Petr Rab
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, Czech Academy of Sciences, Rumburská, Liběchov, Czech Republic
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Weerayuth Supiwong
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai, Thailand
| | - Kriengkrai Seetapan
- School of Agriculture and Natural Resources, University of Phayao, Tumbol Maeka, Muang, Phayao, Thailand
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen, Thailand
| | | | - Satit Arunsang
- Program in Animal Science, Faculty of Agricultural Technology and Agro-Industry, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya, Ayutthaya, Thailand
| | - Phichaya Buasriyot
- Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Mueang Nonthaburi, Nonthaburi, Thailand
| | - Sampun Tongnunui
- Department of Conservation Biology, Mahidol University, Kanchanburi Campus, Sai Yok, Kanchanaburi Province, Thailand
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Laboratório de Citogenética de Peixes, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
de Menezes Cavalcante Sassi F, Sember A, Deon GA, Liehr T, Padutsch N, Oyakawa OT, Vicari MR, Bertollo LAC, Moreira-Filho O, de Bello Cioffi M. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X 1X 2Y sex chromosome system origin. Sci Rep 2023; 13:15756. [PMID: 37735233 PMCID: PMC10514344 DOI: 10.1038/s41598-023-42617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
The Neotropical monophyletic catfish genus Harttia represents an excellent model to study karyotype and sex chromosome evolution in teleosts. Its species split into three phylogenetic clades distributed along the Brazilian territory and they differ widely in karyotype traits, including the presence of standard or multiple sex chromosome systems in some members. Here, we investigate the chromosomal rearrangements and associated synteny blocks involved in the origin of a multiple X1X2Y sex chromosome system present in three out of six sampled Amazonian-clade species. Using 5S and 18S ribosomal DNA fluorescence in situ hybridization and whole chromosome painting with probes corresponding to X1 and X2 chromosomes of X1X2Y system from H. punctata, we confirm previous assumptions that X1X2Y sex chromosome systems of H. punctata, H. duriventris and H. villasboas represent the same linkage groups which also form the putative XY sex chromosomes of H. rondoni. The shared homeology between X1X2Y sex chromosomes suggests they might have originated once in the common ancestor of these closely related species. A joint arrangement of mapped H. punctata X1 and X2 sex chromosomes in early diverging species of different Harttia clades suggests that the X1X2Y sex chromosome system may have formed through an X chromosome fission rather than previously proposed Y-autosome fusion.
Collapse
Affiliation(s)
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská, 89, Liběchov, Czech Republic
| | - Geize Aparecida Deon
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany.
| | - Niklas Padutsch
- Institut für Humangenetik, Universitätsklinikum Jena, 07747, Jena, Germany
| | | | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Luiz Antonio Carlos Bertollo
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Orlando Moreira-Filho
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
7
|
Khensuwan S, Supiwong W, Suwannapoom C, Buasriyot P, Jantarat S, Thongnetr W, Muanglen N, Kaewmad P, Saenjundaeng P, Seetapan K, Liehr T, Tanomtong A. A comparative cytogenetic study of Hypsibarbusmalcolmi and H.wetmorei (Cyprinidae, Poropuntiini). COMPARATIVE CYTOGENETICS 2023; 17:181-194. [PMID: 37794860 PMCID: PMC10547057 DOI: 10.3897/compcytogen.17.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Cyprininae are a highly diversified but demonstrably monophyletic lineage of cypriniform fishes. Here, the karyotype and chromosomal characteristics of Hypsibarbusmalcolmi (Smith, 1945) and H.wetmorei (Smith, 1931) were examined using conventional, nucleolus organizing regions (NORs) and molecular cytogenetic protocols. The diploid chromosome number (2n) of H.malcolmi was 50, the fundamental number (FN) was equal to 62, and the karyotype displayed 8m + 4sm + 38a with NORs located at the centromeric and telomeric positions of the short arms of chromosome pairs 1 and 2, respectively. 2n of H.wetmorei was 50, FN 78, karyotype 14m + 14sm + 22a with the NORs at the telomeric position of the short arm of chromosome pair 2. 2n and FN in males and females were identical. Fluorescence in situ hybridization using different microsatellite motifs as probes also showed substantial genomic divergence between both studied species. In H.wetmorei, (CAG)n and (CAC)n microsatellites accumulated in the telomeric regions of all chromosomes, while in H.malcolmi, they had scattered signals on all chromosomes. Besides, the (GAA)n microsatellites were distributed along all chromosomes of H.malcolmi, but there was a strong hybridization pattern in the centromeric region of a single pair in H.wetmorei. These cytogenomic difference across the genomes of these Hypsibarbus Rainboth, 1996 species are markers for specific evolutionary differentiation within these two species.
Collapse
Affiliation(s)
- Sudarat Khensuwan
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Weerayuth Supiwong
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000, Thailand
| | - Chatmongkon Suwannapoom
- Department of Fishery, School of Agriculture and Natural Resources, University of Phayao, Muang, Phayao 56000, Thailand
| | - Phichaya Buasriyot
- Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Mueang Nonthaburi, Nonthaburi 11000, Thailand
| | - Sitthisak Jantarat
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand
| | - Weera Thongnetr
- Division of Biology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Nawarat Muanglen
- Department of Fisheries, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon 47000, Thailand
| | - Puntivar Kaewmad
- Faculty of Science and Technology, Mahasarakham Rajabhat University, Muang, Maha Sarakham 44000, Thailand
| | - Pasakorn Saenjundaeng
- Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai 43000, Thailand
| | - Kriengkrai Seetapan
- Department of Fishery, School of Agriculture and Natural Resources, University of Phayao, Muang, Phayao 56000, Thailand
| | - Thomas Liehr
- School of Agriculture and Natural Resources, University of Phayao, Tumbol Maeka, Muang District, Phayao Province, 56000 Thailand
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| |
Collapse
|
8
|
Marajó L, Viana PF, Ferreira AMV, Py-Daniel LHR, Cioffi MDB, Sember A, Feldberg E. Chromosomal rearrangements and the first indication of an ♀X 1 X 1 X 2 X 2 /♂X 1 X 2 Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). JOURNAL OF FISH BIOLOGY 2023; 102:443-454. [PMID: 36427042 DOI: 10.1111/jfb.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Rineloricaria is the most diverse genus within the freshwater fish subfamily Loricariinae, and it is widely distributed in the Neotropical region. Despite limited cytogenetic data, records from southern and south-eastern Brazil suggest a high rate of chromosomal rearrangements in this genus, mirrored in remarkable inter- and intraspecific karyotype variability. In the present work, we investigated the karyotype features of Rineloricaria teffeana, an endemic representative from northern Brazil, using both conventional and molecular cytogenetic techniques. We revealed different diploid chromosome numbers (2n) between sexes (33♂/34♀), which suggests the presence of an ♀X1 X1 X2 X2 /♂X1 X2 Y multiple sex chromosome system. The male-limited Y chromosome was the largest and the only biarmed element in the karyotype, implying Y-autosome fusion as the most probable mechanism behind its origination. C-banding revealed low amounts of constitutive heterochromatin, mostly confined to the (peri)centromeric regions of most chromosomes (including the X2 and the Y) but also occupying the distal regions of a few chromosomal pairs. The chromosomal localization of the 18S ribosomal DNA (rDNA) clusters revealed a single site on chromosome pair 4, which was adjacent to the 5S rDNA cluster. Additional 5S rDNA loci were present on the autosome pair 8, X1 chromosome, and in the presumed fusion point on the Y chromosome. The probe for telomeric repeat motif (TTAGGG)n revealed signals of variable intensities at the ends of all chromosomes except for the Y chromosome, where no detectable signals were evidenced. Male-to-female comparative genomic hybridization revealed no sex-specific or sex-biased repetitive DNA accumulations, suggesting a presumably low level of neo-Y chromosome differentiation. We provide evidence that rDNA sites might have played a role in the formation of this putative multiple sex chromosome system and that chromosome fusions originate through different mechanisms among different Rineloricaria species.
Collapse
Affiliation(s)
- Leandro Marajó
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Patrik Ferreira Viana
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Alex Matheus Viana Ferreira
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Lúcia Helena Rapp Py-Daniel
- Coleção de Peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Eliana Feldberg
- Laboratório de Genética Animal, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| |
Collapse
|
9
|
Integrating Cytogenetics and Population Genomics: Allopatry and Neo-Sex Chromosomes May Have Shaped the Genetic Divergence in the Erythrinus erythrinus Species Complex (Teleostei, Characiformes). BIOLOGY 2022; 11:biology11020315. [PMID: 35205181 PMCID: PMC8869172 DOI: 10.3390/biology11020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Fish present astonishing diversity, comprising more species than the combined total of all other vertebrates. Here, we integrated cytogenetic and genomic data to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation in the fish species Erythrinus erythrinus. We hypothesized that the presence of multiple sex chromosomes has contributed to the genetic differentiation of populations, which could have potentially accelerated speciation. Abstract Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among populations in terms of different diploid chromosome numbers (2n), karyotype compositions and sex chromosome systems. Here, we analyzed three distinct populations (one of them cytogenetically investigated for the first time) that differed in terms of their chromosomal features (termed karyomorphs) and by the presence or absence of heteromorphic sex chromosomes. We combined cytogenetics with genomic approaches to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation. The results indicated the presence of high genetic differentiation among populations both from cytogenetic and genomic aspects, with long-distance allopatry potentially being the main agent of genetic divergence. One population showed a neo-X1X2Y sexual chromosome system and we hypothesize that this system is associated with enhanced inter-population genetic differentiation which could have potentially accelerated speciation compared to the effect of allopatry alone.
Collapse
|
10
|
Kretschmer R, Goes CAG, Bertollo LAC, Ezaz T, Porto-Foresti F, Toma GA, Utsunomia R, de Bello Cioffi M. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma 2022; 131:29-45. [PMID: 35099570 DOI: 10.1007/s00412-022-00768-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | | | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ricardo Utsunomia
- Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
11
|
Yano CF, Sember A, Kretschmer R, Bertollo LAC, Ezaz T, Hatanaka T, Liehr T, Ráb P, Al-Rikabi A, Viana PF, Feldberg E, de Oliveira EA, Toma GA, de Bello Cioffi M. Against the mainstream: exceptional evolutionary stability of ZW sex chromosomes across the fish families Triportheidae and Gasteropelecidae (Teleostei: Characiformes). Chromosome Res 2021; 29:391-416. [PMID: 34694531 DOI: 10.1007/s10577-021-09674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Teleost fishes exhibit a breath-taking diversity of sex determination and differentiation mechanisms. They encompass at least nine sex chromosome systems with often low degree of differentiation, high rate of inter- and intra-specific variability, and frequent turnovers. Nevertheless, several mainly female heterogametic systems at an advanced stage of genetic differentiation and high evolutionary stability have been also found across teleosts, especially among Neotropical characiforms. In this study, we aim to characterize the ZZ/ZW sex chromosome system in representatives of the Triportheidae family (Triportheus auritus, Agoniates halecinus, and the basal-most species Lignobrycon myersi) and its sister clade Gasteropelecidae (Carnegiella strigata, Gasteropelecus levis, and Thoracocharax stellatus). We applied both conventional and molecular cytogenetic approaches including chromosomal mapping of 5S and 18S ribosomal DNA clusters, cross-species chromosome painting (Zoo-FISH) with sex chromosome-derived probes and comparative genomic hybridization (CGH). We identified the ZW sex chromosome system for the first time in A. halecinus and G. levis and also in C. strigata formerly reported to lack sex chromosomes. We also brought evidence for possible mechanisms underlying the sex chromosome differentiation, including inversions, repetitive DNA accumulation, and exchange of genetic material. Our Zoo-FISH experiments further strongly indicated that the ZW sex chromosomes of Triportheidae and Gasteropelecidae are homeologous, suggesting their origin before the split of these lineages (approx. 40-70 million years ago). Such extent of sex chromosome stability is almost exceptional in teleosts, and hence, these lineages afford a special opportunity to scrutinize unique evolutionary forces and pressures shaping sex chromosome evolution in fishes and vertebrates in general.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Libechov, 277 21, Czech Republic.
| | - Rafael Kretschmer
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Libechov, 277 21, Czech Republic
| | - Ahmed Al-Rikabi
- Jena University Hospital, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Patrik Ferreira Viana
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petropolis, Manaus, AM, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petropolis, Manaus, AM, Brazil
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235, Sao Carlos, SP, 13565-905, Brazil
| |
Collapse
|
12
|
Yeesin P, Buasriyot P, Ditcharoen S, Chaiyasan P, Suwannapoom C, Juntaree S, Jantarat S, Talumphai S, Cioffi MDB, Liehr T, Tanomtong A, Supiwong W. Comparative study of four Mystus species (Bagridae, Siluriformes) from Thailand: insights into their karyotypic diversity. COMPARATIVE CYTOGENETICS 2021; 15:119-136. [PMID: 33959235 PMCID: PMC8093182 DOI: 10.3897/compcytogen.v15i2.60649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Karyotypes of four catfishes of the genus Mystus Scopoli, 1777 (family Bagridae), M. atrifasciatus Fowler, 1937, M. mysticetus Roberts, 1992, M. singaringan (Bleeker, 1846) and M. wolffii (Bleeker, 1851), were analysed by conventional and Ag-NOR banding as well as fluorescence in situ hybridization (FISH) techniques. Microsatellite d(GC)15, d(CAA)10, d(CAT)10 and d(GAA)10 repeat probes were applied in FISH. The obtained data revealed that the four studied species have different chromosome complements. The diploid chromosome numbers (2n) and the fundamental numbers (NF) range between 52 and 102, 54 and 104, 56 and 98, or 58 and 108 in M. mysticetus, M. atrifasciatus, M. singaringan or M. wolffii, respectively. Karyotype formulae of M. mysticetus, M. atrifasciatus, M. singaringan and M. wolffii are 24m+26sm+4a, 26m+24sm+2a, 24m+18sm+14a and 30m+22sm+6a, respectively. A single pair of NORs was identified adjacent to the telomeres of the short arm of chromosome pairs 3 (metacentric) in M. atrifasciatus, 20 (submetacentric) in M. mysticetus, 15 (submetacentric) in M. singaringan, and 5 (metacentric) in M. wolffii. The d(GC)15, d(CAA)10, d(CAT)10 and d(GAA)10 repeats were abundantly distributed in species-specific patterns. Overall, we present a comparison of cytogenetic and molecular cytogenetic patterns of four species from genus Mystus providing insights into their karyotype diversity in the genus.
Collapse
Affiliation(s)
- Pun Yeesin
- Department of Technology and Industries, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Muang, Pattani 94000, Thailand
| | - Phichaya Buasriyot
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Sukhonthip Ditcharoen
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Patcharaporn Chaiyasan
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Chatmongkon Suwannapoom
- Department of Fishery, School of Agriculture and Natural Resources, University of Phayao, Muang, Phayao 56000, Thailand
| | - Sippakorn Juntaree
- Applied Science Program, Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Muang, Nong Khai 43000, Thailand
| | - Sitthisak Jantarat
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Mueng, Pattani 94000, Thailand
| | - Sucheela Talumphai
- Major Biology, Department of Science and Technology, Faculty of Liberal Arts and Science, Roi Et Rajabhat University, Roi Et 45120, Thailand
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz Km. 235, C.P. 676, São Carlos, SP 13565-905, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747, Jena, Germany
| | - Alongklod Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand
| | - Weerayuth Supiwong
- Applied Science Program, Faculty of Interdisciplinary Studies, Nong Khai Campus, Khon Kaen University, Muang, Nong Khai 43000, Thailand
| |
Collapse
|
13
|
Ibagón N, Maldonado-Ocampo JA, Cioffi MDB, Dergam JA. Chromosomal Diversity of Hoplias malabaricus (Characiformes, Erythrinidae) Along the Magdalena River (Colombia—Northern South America) and Its Significance for the Neotropical Region. Zebrafish 2020. [DOI: 10.1089/zeb.2019.1827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nicole Ibagón
- Departamento de Biologia Geral, Universidad Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Programa de Ecología, Fundación Universitaria de Popayán, Popayán, Cauca, Colombia
| | - Javier A. Maldonado-Ocampo
- Laboratorio de Ictiologia, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Jorge A. Dergam
- Departamento de Biologia Animal, Universidad Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
Gokhman VE, Cioffi MDB, König C, Pollmann M, Gantert C, Krogmann L, Steidle JLM, Kosyakova N, Liehr T, Al-Rikabi A. Microdissection and whole chromosome painting confirm karyotype transformation in cryptic species of the Lariophagus distinguendus (Förster, 1841) complex (Hymenoptera: Pteromalidae). PLoS One 2019; 14:e0225257. [PMID: 31725808 PMCID: PMC6855445 DOI: 10.1371/journal.pone.0225257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022] Open
Abstract
Karyotypes of two cryptic species of parasitoid Hymenoptera with n = 5 and 6 belonging to the Lariophagus distinguendus (Förster, 1841) complex, which includes cosmopolitan parasitoids of coleopteran stored-product pests, were studied using glass-needle based microdissection, reverse and cross-species fluorescence in situ hybridisation (FISH). This experiment strongly indicates that the largest metacentric chromosome in the karyotype with n = 5 originated from a particular fusion between the only acrocentric and a smaller metacentric chromosome of the set with n = 6, therefore confirming our previous hypothesis based on the karyotypic analysis using chromosome morphometrics. This study represents the first successful application of both microdissection and whole chromosome painting for the reconstruction of karyotypic rearrangements in closely related species of parasitoids, as well as in the order Hymenoptera in general.
Collapse
Affiliation(s)
| | - Marcelo de Bello Cioffi
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Christian König
- Institute for Zoology, University of Hohenheim, Stuttgart, Germany
| | - Marie Pollmann
- Institute for Zoology, University of Hohenheim, Stuttgart, Germany
| | - Cornelia Gantert
- Institute for Zoology, University of Hohenheim, Stuttgart, Germany
| | - Lars Krogmann
- Institute for Zoology, University of Hohenheim, Stuttgart, Germany
- Department of Entomology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | | | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Supiwong W, Pinthong K, Seetapan K, Saenjundaeng P, Bertollo LAC, de Oliveira EA, Yano CF, Liehr T, Phimphan S, Tanomtong A, B Cioffi M. Karyotype diversity and evolutionary trends in the Asian swamp eel Monopterus albus (Synbranchiformes, Synbranchidae): a case of chromosomal speciation? BMC Evol Biol 2019; 19:73. [PMID: 30849933 PMCID: PMC6408769 DOI: 10.1186/s12862-019-1393-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/15/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Synbranchidae or swamp eels are fishes belonging to the order Synbranchiformes that occur in both freshwater and occasionally in brackish. They are worldwide distributed in tropical and subtropical rivers of four different continents. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. Inside this group, a still almost unexplored species under the cytogenetic point of view is the Asian swamp eel Monopterus albus, a widely distributed species throughout Asia. Here, we tested the hypothesis of chromosomal speciation, where a case of sympatric speciation may occur as the primary consequence of chromosomal rearrangements. We performed a comparative chromosomal analysis of M. albus from 22 different localities in Thailand, using distinct staining methods (C-banding, Ag-NO3, and Chromomycin A3), and FISH with repetitive DNA probes (5S rDNA, 18S rDNA, Rex1 element and microsatellite repeats). RESULTS This approach evidenced two contrasting karyotypes (named karyomorphs A and B) that varied concerning their 2n and repetitive DNAs distribution, where chromosomal fusions and pericentric inversions were involved in such differentiation. While the karyomorph A has 2n = 24 chromosomes, the karyomorph B has only 2n = 18, both with NF = 24. In addition, karyomorph A contains only acrocentric chromosomes, while karyomorph B contains three unique metacentric pairs. These features highlight that M. albus has already gone through a significant genomic divergence, and may include at least two cryptic species. CONCLUSIONS This marked chromosomal differentiation, likely linked to the lifestyle of these fishes, point to the occurrence of a chromosomal speciation scenario, in which fusions and inversions had a prominent role. This highlights the biodiversity of M. albus and justifies its taxonomic revision, since this nominal species may constitute a species complex.
Collapse
Affiliation(s)
- Weerayuth Supiwong
- Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai, 34000 Thailand
| | - Krit Pinthong
- Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Muang, Surin, 32000 Thailand
| | - Kriengkrai Seetapan
- School of Agriculture and Natural Resources, University of Phayao, Tumbol Maeka, Muang, Phayao, 56000 Thailand
| | - Pasakorn Saenjundaeng
- Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Muang, Nong Khai, 34000 Thailand
| | - Luiz A. C. Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| | - Ezequiel A. de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| | - Cassia F. Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Sumalee Phimphan
- Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen, 40002 Thailand
| | - Alongklod Tanomtong
- Toxic Substances in Livestock and Aquatic Animals Research Group, Khon Kaen University, Muang, Khon Kaen, 40002 Thailand
| | - Marcelo B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo Brazil
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| |
Collapse
|
16
|
Saenjundaeng P, de Bello Cioffi M, de Oliveira EA, Tanomtong A, Supiwong W, Phimphan S, Collares-Pereira MJ, Sember A, Bertollo LAC, Liehr T, Yano CF, Hatanaka T, Ráb P. Chromosomes of Asian cyprinid fishes: cytogenetic analysis of two representatives of small paleotetraploid tribe Probarbini. Mol Cytogenet 2018; 11:51. [PMID: 30202442 PMCID: PMC6123905 DOI: 10.1186/s13039-018-0399-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 12/01/2022] Open
Abstract
Background Polyploidy, although still poorly explored, represents an important evolutionary event in several cyprinid clades. Herein, Catlocarpio siamensis and Probarbus jullieni - representatives of the paleotetraploid tribe Probarbini, were characterized both by conventional and molecular cytogenetic methods. Results Alike most other paleotetraploid cyprinids (with 2n = 100), both species studied here shared 2n = 98 but differed in karyotypes: C. siamensis displayed 18m + 34sm + 46st/a; NF = 150, while P. jullieni exhibited 26m + 14sm + 58st/a; NF = 138. Fluorescence in situ hybridization (FISH) with rDNA probes revealed two (5S) and eight (18S) signals in C. siamensis, respectively, and six signals for both probes in P. jullieni. FISH with microsatellite motifs evidenced substantial genomic divergence between both species. The almost doubled size of the chromosome pairs #1 in C. siamensis and #14 in P. jullieni compared to the rest of corresponding karyotypes indicated chromosomal fusions. Conclusion Based on our findings, together with likely the same reduced 2n = 98 karyotypes in the remainder Probarbini species, we hypothesize that the karyotype 2n = 98 might represent a derived character, shared by all members of the Probarbini clade. Besides, we also witnessed considerable changes in the amount and distribution of certain repetitive DNA classes, suggesting complex post-polyploidization processes in this small paleotetraploid tribe.
Collapse
Affiliation(s)
- Pasakorn Saenjundaeng
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Marcelo de Bello Cioffi
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Ezequiel Aguiar de Oliveira
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil.,Secretaria de Estado de Educação de Mato Grosso - SEDUC-MT, Cuiabá, MT Brazil
| | - Alongklod Tanomtong
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Weerayuth Supiwong
- 4Faculty of Applied Science and Engineering, Khon Kaen University, Nong Kai Campus, Muang, Nong Kai Thailand
| | - Sumalee Phimphan
- 1Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang District, Khon Kaen, Thailand
| | - Maria João Collares-Pereira
- 5Faculdade de Ciencias, Centre for Ecology, Evolution and Environmental Changes, Universidade de Lisboa, Campo Grande, PT-1749-016 Lisbon, Portugal
| | - Alexandr Sember
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | | | - Thomas Liehr
- 7Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Cassia Fernanda Yano
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Terumi Hatanaka
- 2Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Petr Ráb
- 6Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| |
Collapse
|
17
|
Hatanaka T, de Oliveira EA, Ráb P, Yano CF, Bertollo LAC, Ezaz T, Jegede OOI, Liehr T, Olaleye VF, de Bello Cioffi M. First chromosomal analysis in Gymnarchus niloticus (Gymnarchidae: Osteoglossiformes): insights into the karyotype evolution of this ancient fish order. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Ezequiel A de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- Secretaria de Estado de Educação de Mato Grosso – SEDUC-MT, Cuiabá, MT, Brazil
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Cassia F Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Canberra, ACT, Australia
| | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Victor F Olaleye
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
18
|
Machado MDA, Pieczarka JC, Silva FHR, O'Brien PCM, Ferguson-Smith MA, Nagamachi CY. Extensive Karyotype Reorganization in the Fish Gymnotus arapaima (Gymnotiformes, Gymnotidae) Highlighted by Zoo-FISH Analysis. Front Genet 2018; 9:8. [PMID: 29434621 PMCID: PMC5790778 DOI: 10.3389/fgene.2018.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/08/2018] [Indexed: 01/25/2023] Open
Abstract
The genus Gymnotus (Gymnotiformes) contains over 40 species of freshwater electric fishes exhibiting a wide distribution throughout Central and South America, and being particularly prevalent in the Amazon basin. Cytogenetics has been an important tool in the cytotaxonomy and elucidation of evolutionary processes in this genus, including the unraveling the variety of diploid chromosome number (2n = from 34 to 54), the high karyotype diversity among species with a shared diploid number, different sex chromosome systems, and variation in the distribution of several Repetitive DNAs and colocation and association between those sequences. Recently whole chromosome painting (WCP) has been used for tracking the chromosomal evolution of the genus, showing highly reorganized karyotypes and the conserved synteny of the NOR bearing par within the clade G. carapo. In this study, painting probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30 m/sm + 12 st/a) were hybridized to the mitotic metaphases of G. arapaima (GAR, 2n = 44, 24 m/sm + 20 st/a). Our results uncovered chromosomal rearrangements and a high number of repetitive DNA regions. From the 12 chromosome pairs of G. carapo that can be individually differentiated (GCA1-3, 6, 7, 9, 14, 16, and 18-21), six pairs (GCA 1, 9, 14, 18, 20, 21) show conserved homology with GAR, five pairs (GCA 1, 9, 14, 20, 21) are also shared with cryptic species G. carapo 2n = 40 (34 m/sm + 6 st/a) and only the NOR bearing pair (GCA 20) is shared with G. capanema (GCP 2n = 34, 20 m/sm + 14 st/a). The remaining chromosomes are reorganized in the karyotype of GAR. Despite the close phylogenetic relationships of these species, our chromosome painting studies demonstrate an extensive reorganization of their karyotypes.
Collapse
Affiliation(s)
- Milla de Andrade Machado
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Julio C Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Fernando H R Silva
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Cleusa Y Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém-Pará, Brazil
| |
Collapse
|
19
|
Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes). Chromosoma 2017; 127:115-128. [DOI: 10.1007/s00412-017-0648-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
20
|
Xu D, Molina WF, Yano CF, Zhang Y, de Oliveira EA, Lou B, de Bello Cioffi M. Comparative cytogenetics in three Sciaenid species (Teleostei, Perciformes): evidence of interspecific chromosomal diversification. Mol Cytogenet 2017; 10:37. [PMID: 29075328 PMCID: PMC5654061 DOI: 10.1186/s13039-017-0338-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/17/2017] [Indexed: 11/28/2022] Open
Abstract
Background Species belonging to the Sciaenidae family present a karyotype composed by 48 acrocentric chromosomes and are thus considered a striking example of chromosomal conservation. In this family, three species are extensively studied including Larimichthys crocea, Larimichthys polyactis and Nibea albiflora due to their importance in fishery and aquaculture in East Asia. Despite abundant data of population genetics available for some of them, cytogenetic information on these species is still scarce and obtained by conventional cytogenetic protocols. Therefore, a more detailed cytogenomic investigation was performed in these species to analyze their karyotype differentiation using conventional staining techniques and fluorescence in situ hybridization to map several repetitive DNAs. Results The three species showed a slight karyotype differentiation with 4sm + 2st + 42a in L. polyactis, 20st + 28a in L. crocea and 48a in N. albiflora. Additionally, the mapping of repetitive sequences further revealed a number of interspecific differences among them. Particularly, 18S and 5S rDNA sites showed syntenic arrangements in N. albiflora and non-syntenic arrangements in both Larimichthys species. The microsatellites (CA)15 and (GA)15 showed conspicuous terminal clusters in some chromosomes of all species. On the other hand, (CGG)10 repeats, Rex6 elements and U2 snRNA displayed a scattered distribution on the chromosomes. Conclusions Although the three Sciaenid species examined displayed a general pattern of karyotypic conservatism, we explored chromosomal diversification among them. The diversificated karyotypic macrostructure is followed by intergeneric evolutionary diversification of the repetitive sequences. The data indicate some degree of intergeneric evolutionary diversification at chromosomal level, and suggest the evolutionary dynamics among Sciaenid species, higher than previously thought. The present cytogenetic data provide new insight into the chromosomal diversification in Sciaenidae, and contribute to inferring the chromosomal rearrangements and trends of karyotype evolution in this fish group.
Collapse
Affiliation(s)
- Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, 316100 Zhoushan, Zhejiang Province People's Republic of China
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, 3000, Natal, RN 59078-970 Brazil
| | - Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 Brazil
| | - Yurong Zhang
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, 316100 Zhoushan, Zhejiang Province People's Republic of China
| | - Ezequiel Aguiar de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 Brazil.,Secretaria de Estado de Educação de Mato Grosso - SEDUC-MT, Cuiabá, MT Brazil
| | - Bao Lou
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, 316100 Zhoushan, Zhejiang Province People's Republic of China
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 Brazil
| |
Collapse
|
21
|
de Moraes RLR, Bertollo LAC, Marinho MMF, Yano CF, Hatanaka T, Barby FF, Troy WP, Cioffi MDB. Evolutionary Relationships and Cytotaxonomy Considerations in the Genus Pyrrhulina (Characiformes, Lebiasinidae). Zebrafish 2017; 14:536-546. [PMID: 28767325 DOI: 10.1089/zeb.2017.1465] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although fishes exhibit the greatest biodiversity among the vertebrates, a large percentage of this fauna is still underexplored on evolutionary cytogenetic questions, particularly the miniature species. The Lebiasinidae family is a particular example for such case. This study is the first one presenting differential cytogenetic methods, such as C-banding, repetitive DNAs mapping, comparative genomic hybridization (CGH), and whole chromosome painting in lebiasinid species. Pyrrhulina australis and Pyrrhulina aff. australis were deeply investigated concerning their chromosomal patterns and evolutionary relationships. These species have a very similar morphology, but they can be distinguished by a longitudinal midlateral faintly dark stripe exclusive for Pyrrhulina aff. australis. Both species presented 2n = 40 chromosomes (4st +36a), without heteromorphic sex chromosomes. However, despite their morphological and karyotype resemblance, it was evidenced that both species have already gone through a significant genomic divergence, thus corresponding to distinct evolutionary units. Furthermore, to give additional support to some proposals on evolutionary relationship among Lebiasinidae with other fish families, a chromosomal comparative approach with Erythrinus erythrinus, a representative species of the Erythrinidae family, was also performed. In addition to have similar karyotype structure, mainly composed by acrocentric chromosomes, both species share uncommon genomic similarities, such as (i) syntenic location of 5S and 18S rDNA sequences; (ii) huge dispersion of multiple 5S rDNA sites in the karyotypes; and (iii) complex association between 5S rDNA and Rex3 elements. CGH experiments, despite reinforcing some shared genomic homologies, also highlighted that both Pyrrhulina and Erythrinus have a range of nonoverlapping species-specific signals. The overall chromosomal data proved to be effective markers for the cytotaxonomy and evolutionary process among Lebiasinidae fishes.
Collapse
Affiliation(s)
| | | | | | - Cassia Fernanda Yano
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar) , São Carlos, Brazil
| | - Terumi Hatanaka
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar) , São Carlos, Brazil
| | - Felipe Faix Barby
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar) , São Carlos, Brazil
| | - Waldo Pinheiro Troy
- 3 Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso , Campus de Tangará da Serra, Tangará da Serra, Brazil
| | - Marcelo de Bello Cioffi
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar) , São Carlos, Brazil
| |
Collapse
|