1
|
Myers SJ, Ruppa KP, Wilson LJ, Tahirovic YA, Lyuboslavsky P, Menaldino DS, Dentmon ZW, Koszalka GW, Zaczek R, Dingledine RJ, Traynelis SF, Liotta DC. A Glutamate N-Methyl-d-Aspartate (NMDA) Receptor Subunit 2B-Selective Inhibitor of NMDA Receptor Function with Enhanced Potency at Acidic pH and Oral Bioavailability for Clinical Use. J Pharmacol Exp Ther 2021; 379:41-52. [PMID: 34493631 DOI: 10.1124/jpet.120.000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
We describe a clinical candidate molecule from a new series of glutamate N-methyl-d-aspartate receptor subunit 2B-selective inhibitors that shows enhanced inhibition at extracellular acidic pH values relative to physiologic pH. This property should render these compounds more effective inhibitors of N-methyl-d-aspartate receptors at synapses responding to a high frequency of action potentials, since glutamate-containing vesicles are acidic within their lumen. In addition, acidification of penumbral regions around ischemic tissue should also enhance selective drug action for improved neuroprotection. The aryl piperazine we describe here shows strong neuroprotective actions with minimal side effects in preclinical studies. The clinical candidate molecule NP10679 has high oral bioavailability with good brain penetration and is suitable for both intravenous and oral dosing for therapeutic use in humans. SIGNIFICANCE STATEMENT: This study identifies a new series of glutamate N-methyl-d-aspartate (NMDA) receptor subunit 2B-selective negative allosteric modulators with properties appropriate for clinical advancement. The compounds are more potent at acidic pH, associated with ischemic tissue, and this property should increase the therapeutic safety of this class by improving efficacy in affected tissue while sparing NMDA receptor block in healthy brain.
Collapse
Affiliation(s)
- Scott J Myers
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Kamalesh P Ruppa
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Lawrence J Wilson
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Yesim A Tahirovic
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Polina Lyuboslavsky
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - David S Menaldino
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Zackery W Dentmon
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - George W Koszalka
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Robert Zaczek
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Raymond J Dingledine
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Dennis C Liotta
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| |
Collapse
|
2
|
Perszyk RE, Zheng Z, Banke TG, Zhang J, Xie L, McDaniel MJ, Katzman BM, Pelly SC, Yuan H, Liotta DC, Traynelis SF. The Negative Allosteric Modulator EU1794-4 Reduces Single-Channel Conductance and Ca 2+ Permeability of GluN1/GluN2A N-Methyl-d-Aspartate Receptors. Mol Pharmacol 2021; 99:399-411. [PMID: 33688039 DOI: 10.1124/molpharm.120.000218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
NMDA receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic currents. These receptors are involved in several important brain functions, including learning and memory, and have also been implicated in neuropathological conditions and acute central nervous system injury, which has driven therapeutic interest in their modulation. The EU1794 series of positive and negative allosteric modulators of NMDA receptors has structural determinants of action near the preM1 helix that is involved in channel gating. Here, we describe the effects of the negative allosteric modulator EU1794-4 on GluN1/GluN2A channels studied in excised outside-out patches. Coapplication of EU1794-4 with a maximally effective concentration of glutamate and glycine increases the fraction of time the channel is open by nearly 1.5-fold, yet reduces single-channel conductance by increasing access of the channel to several subconductance levels, which has the net overall effect of reducing the macroscopic current. The lack of voltage-dependence of negative modulation suggests this is unrelated to a channel block mechanism. As seen with other NMDA receptor modulators that reduce channel conductance, EU1794-4 also reduces the Ca2+ permeability relative to monovalent cations of GluN1/GluN2A receptors. We conclude that EU1794-4 is a prototype for a new class of NMDA receptor negative allosteric modulators that reduce both the overall current that flows after receptor activation and the flux of Ca2+ ion relative to monovalent cations. SIGNIFICANCE STATEMENT: NMDA receptors are implicated in many neurological conditions but are challenging to target given their ubiquitous expression. Several newly identified properties of the negative allosteric modulator EU1794-4, including reducing Ca2+ flux through NMDA receptors and attenuating channel conductance, explain why this modulator reduces but does not eliminate NMDA receptor function. A modulator with these properties could have therapeutic advantages for indications in which attenuation of NMDA receptor function is beneficial, such as neurodegenerative disease and acute injury.
Collapse
Affiliation(s)
- Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Zhaoshi Zheng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Lingling Xie
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Miranda J McDaniel
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Brooke M Katzman
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Stephen C Pelly
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Dennis C Liotta
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia (R.E.P., Z.Z., T.G.B., J.Z., L.X., M.J.M., H.Y., S.F.T.) and Department of Chemistry, Emory University, Atlanta, Georgia (B.M.K., S.C.P., D.C.L.)
| |
Collapse
|
3
|
Nguyen T, Al-Juboori MH, Walerstein J, Xiong W, Jin X. Impaired Glutamate Receptor Function Underlies Early Activity Loss of Ipsilesional Motor Cortex after Closed-Head Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2018-2029. [PMID: 33238833 DOI: 10.1089/neu.2020.7225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although mild traumatic brain injury (mTBI) accounts for the majority of TBI patients, the effects and cellular and molecular mechanisms of mTBI on cortical neural circuits are still not well understood. Given the transient and non-specific functional deficits after mTBI, it is important to understand whether mTBI causes functional deficits of the brain and the underlying mechanism, particularly during the early stage after injury. Here, we used in vivo optogenetic motor mapping to determine longitudinal changes in cortical motor map and in vitro calcium imaging to study how changes in cortical excitability and calcium signals may contribute to the motor deficits in a closed-head mTBI model. In channelrhodopsin 2 (ChR2)-expressing transgenic mice, we recorded electromyograms (EMGs) from bicep muscles induced by scanning blue laser on the motor cortex. There were significant decreases in the size and response amplitude of motor maps of the injured cortex at 2 h post-mTBI, but an increase in motor map size of the contralateral cortex in 12 h post-mTBI, both of which recovered to baseline level in 24 h. Calcium imaging of cortical slices prepared from green fluorescent calmodulin proteins-expressing transgenic mice showed a lower amplitude, but longer duration, of calcium transients of the injured cortex in 2 h post-mTBI. Blockade of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or N-methyl-d-aspartate receptors resulted in smaller amplitude of calcium transients, suggesting impaired function of both receptor types. Imaging of calcium transients evoked by glutamate uncaging revealed reduced response amplitudes and longer duration in 2, 12, and 24 h after mTBI. Higher percentages of neurons of the injured cortex had a longer latency period after uncaging than that of the uninjured neurons. The results suggest that impaired glutamate neurotransmission contributes to functional deficits of the motor cortex in vivo, which supports enhancing glutamate neurotransmission as a potential therapeutic approach for the treatment of mTBI.
Collapse
Affiliation(s)
- Tyler Nguyen
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Medical Neuroscience Program, Stark Neuroscience Research Institute, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mohammed Haider Al-Juboori
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jakub Walerstein
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wenhui Xiong
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoming Jin
- Indiana Spinal Cord and Brain Injury Research Group, Stark Neuroscience Research Institute and Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Research Institute and Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150:1081-1105. [PMID: 30037851 PMCID: PMC6080888 DOI: 10.1085/jgp.201812032] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hansen et al. review recent structural data that have provided insight into the function and allosteric modulation of NMDA receptors. NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Feng Yi
- Department of Biomedical and Pharmaceutical Sciences and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT
| | - Riley E Perszyk
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Lonnie P Wollmuth
- Departments of Neurobiology & Behavior and Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
5
|
Haller CS. Twelve-month prospective cohort study of patients with severe traumatic brain injury and their relatives: Coping, satisfaction with life and neurological functioning. Brain Inj 2017; 31:1903-1909. [DOI: 10.1080/02699052.2017.1346295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chiara S. Haller
- Department of Psychology, Harvard University, Cambridge, MA, USA; Division of Public Psychiatry, Massachusetts Mental Health Center, Boston, MA, USA
| |
Collapse
|
6
|
Haller CS, Bosma CM, Kapur K, Zafonte R, Langer EJ. Mindful creativity matters: trajectories of reported functioning after severe traumatic brain injury as a function of mindful creativity in patients’ relatives: a multilevel analysis. Qual Life Res 2016; 26:893-902. [DOI: 10.1007/s11136-016-1416-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
7
|
Yuan H, Myers SJ, Wells G, Nicholson KL, Swanger SA, Lyuboslavsky P, Tahirovic YA, Menaldino DS, Ganesh T, Wilson LJ, Liotta DC, Snyder JP, Traynelis SF. Context-dependent GluN2B-selective inhibitors of NMDA receptor function are neuroprotective with minimal side effects. Neuron 2015; 85:1305-1318. [PMID: 25728572 DOI: 10.1016/j.neuron.2015.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/12/2015] [Accepted: 01/29/2015] [Indexed: 01/09/2023]
Abstract
Stroke remains a significant problem despite decades of work on neuroprotective strategies. NMDA receptor (NMDAR) antagonists are neuroprotective in preclinical models, but have been clinically unsuccessful, in part due to side effects. Here we describe a prototypical GluN2B-selective antagonist with an IC50 value that is 10-fold more potent at acidic pH 6.9 associated with ischemic tissue compared to pH 7.6, a value close to the pH in healthy brain tissue. This should maximize neuroprotection in ischemic tissue while minimizing on-target side effects associated with NMDAR blockade in noninjured brain regions. We have determined the mechanism underlying pH-dependent inhibition and demonstrate the utility of this approach in vivo. We also identify dicarboxylate dimers as a novel proton sensor in proteins. These results provide insight into the molecular basis of pH-dependent neuroprotective NMDAR block, which could be beneficial in a wide range of neurological insults associated with tissue acidification.
Collapse
Affiliation(s)
- Hongjie Yuan
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | - Scott J Myers
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | - Gordon Wells
- Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - Katherine L Nicholson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA.,Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Sharon A Swanger
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | | | | | | | - Thota Ganesh
- Department of Pharmacology, Emory University, Atlanta, GA 30322 USA
| | | | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | - James P Snyder
- Department of Chemistry, Emory University, Atlanta, GA 30322 USA
| | | |
Collapse
|
8
|
Walder B, Haller G, Rebetez MML, Delhumeau C, Bottequin E, Schoettker P, Ravussin P, Brodmann Maeder M, Stover JF, Zürcher M, Haller A, Wäckelin A, Haberthür C, Fandino J, Haller CS, Osterwalder J. Severe traumatic brain injury in a high-income country: an epidemiological study. J Neurotrauma 2013; 30:1934-42. [PMID: 23822874 DOI: 10.1089/neu.2013.2955] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This adult cohort determined the incidence and patients' short-term outcomes of severe traumatic brain injury (sTBI) in Switzerland and age-related differences. A prospective cohort study with a follow-up at 14 days was performed. Patients ≥16 years of age sustaining sTBI and admitted to 1 of 11 trauma centers were included. sTBI was defined by an Abbreviated Injury Scale of the head (HAIS) score >3. The centers participated from 6 months to 3 years. The results are presented as percentages, medians, and interquartile ranges (IQRs). Subgroup analyses were performed for patients ≤65 years (younger) and >65 (elderly). sTBI was observed in 921 patients (median age, 55 years; IQR, 33-71); 683 (74.2%) were male. Females were older (median age, 67 years; IQR, 42-80) than males (52; IQR, 31-67; p<0.00001). The estimated incidence was 10.58 per 100,000 inhabitants per year. Blunt trauma was observed in 879 patients (95.4%) and multiple trauma in 283 (30.7%). Median Glasgow Coma Score (GCS) on the scene was 9 (IQR 4-14; 8 in younger, 12 in elderly) and in emergency departments 5 (IQR, 3-14; 3 in younger, 8 in elderly). Trauma mechanisms included the following: 484 patients with falls (52.6%; younger, 242 patients [50.0%]; elderly, 242 [50.0%]), 291 with road traffic accidents (31.6%; younger, 237 patients [81.4%]; elderly, 54 [18.6%]), and 146 with others (15.8%). Mortality was 30.2% (24.5% in younger, 40.9% in elderly). Median GCS at 14 days was 15 (IQR, 14-15) without differences among subgroups. Estimated incidence of sTBI in Switzerland was low, age was high, and mortality considerable. The elderly had higher initial GCS and a higher death rate, but high GCS at 14 days.
Collapse
Affiliation(s)
- Bernhard Walder
- 1 Division of Anesthesiology, University Hospitals of Geneva (HUG) , Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nelson DW, Rudehill A, MacCallum RM, Holst A, Wanecek M, Weitzberg E, Bellander BM. Multivariate outcome prediction in traumatic brain injury with focus on laboratory values. J Neurotrauma 2012; 29:2613-24. [PMID: 22994879 DOI: 10.1089/neu.2012.2468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of morbidity and mortality. Identifying factors relevant to outcome can provide a better understanding of TBI pathophysiology, in addition to aiding prognostication. Many common laboratory variables have been related to outcome but may not be independent predictors in a multivariate setting. In this study, 757 patients were identified in the Karolinska TBI database who had retrievable early laboratory variables. These were analyzed towards a dichotomized Glasgow Outcome Scale (GOS) with logistic regression and relevance vector machines, a non-linear machine learning method, univariately and controlled for the known important predictors in TBI outcome: age, Glasgow Coma Score (GCS), pupil response, and computed tomography (CT) score. Accuracy was assessed with Nagelkerke's pseudo R². Of the 18 investigated laboratory variables, 15 were found significant (p<0.05) towards outcome in univariate analyses. In contrast, when adjusting for other predictors, few remained significant. Creatinine was found an independent predictor of TBI outcome. Glucose, albumin, and osmolarity levels were also identified as predictors, depending on analysis method. A worse outcome related to increasing osmolarity may warrant further study. Importantly, hemoglobin was not found significant when adjusted for post-resuscitation GCS as opposed to an admission GCS, and timing of GCS can thus have a major impact on conclusions. In total, laboratory variables added an additional 1.3-4.4% to pseudo R².
Collapse
Affiliation(s)
- David W Nelson
- Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
10
|
Siddiq I, Park E, Liu E, Spratt SK, Surosky R, Lee G, Ando D, Giedlin M, Hare GMT, Fehlings MG, Baker AJ. Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 2012; 29:2647-59. [PMID: 23016562 DOI: 10.1089/neu.2012.2444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a role in angiogenesis and has been shown to be neuroprotective following central nervous system trauma. In the present study we evaluated the pro-angiogenic and neuroprotective effects of an engineered zinc-finger protein transcription factor transactivator targeting the vascular endothelial growth factor A (VEGF-ZFP). We used two virus delivery systems, adeno-virus and adeno-associated virus, to examine the effects of early and delayed VEGF-A upregulation after brain trauma, respectively. Male Sprague-Dawley rats were subject to a unilateral fluid percussion injury (FPI) of moderate severity (2.2-2.5 atm) followed by intracerebral microinjection of either adenovirus vector (Adv) or an adeno-associated vector (AAV) carrying the VEGF-ZFP construct. Adv-VEGF-ZFP-treated animals had significantly fewer TUNEL positive cells in the injured penumbra of the cortex (p<0.001) and hippocampus (p=0.001) relative to untreated rats at 72 h post-injury. Adv-VEGF-ZFP treatment significantly improved fEPSP values (p=0.007) in the CA1 region relative to injury alone. Treatment with AAV2-VEGF-ZFP resulted in improved post-injury microvascular diameter and improved functional recovery on the balance beam and rotarod task at 30 days post-injury. Collectively, the results provide supportive evidence for the concept of acute and delayed treatment following TBI using VEGF-ZFP to induce angiogenesis, reduce cell death, and enhance functional recovery.
Collapse
Affiliation(s)
- Ishita Siddiq
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bains M, Hall ED. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta Mol Basis Dis 2011; 1822:675-84. [PMID: 22080976 DOI: 10.1016/j.bbadis.2011.10.017] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/28/2011] [Indexed: 12/15/2022]
Abstract
Free radical formation and oxidative damage have been extensively investigated and validated as important contributors to the pathophysiology of acute central nervous system injury. The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following injury occurring within minutes of mechanical impact. A key component in this event is peroxynitrite-induced lipid peroxidation. As discussed in this review, peroxynitrite formation and lipid peroxidation irreversibly damages neuronal membrane lipids and protein function, which results in subsequent disruptions in ion homeostasis, glutamate-mediated excitotoxicity, mitochondrial respiratory failure and microvascular damage. Antioxidant approaches include the inhibition and/or scavenging of superoxide, peroxynitrite, or carbonyl compounds, the inhibition of lipid peroxidation and the targeting of the endogenous antioxidant defense system. This review covers the preclinical and clinical literature supporting the role of ROS and RNS and their derived oxygen free radicals in the secondary injury response following acute traumatic brain injury (TBI) and spinal cord injury (SCI) and reviews the past and current trends in the development of antioxidant therapeutic strategies. Combinatorial treatment with the suggested mechanistically complementary antioxidants will also be discussed as a promising neuroprotective approach in TBI and SCI therapeutic research. This article is part of a Special Issue entitled: Antioxidants and antioxidant treatment in disease.
Collapse
Affiliation(s)
- Mona Bains
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky 40506, USA
| | | |
Collapse
|
12
|
Wagner AK, McCullough EH, Niyonkuru C, Ozawa H, Loucks TL, Dobos JA, Brett CA, Santarsieri M, Dixon CE, Berga SL, Fabio A. Acute serum hormone levels: characterization and prognosis after severe traumatic brain injury. J Neurotrauma 2011; 28:871-88. [PMID: 21488721 PMCID: PMC3113446 DOI: 10.1089/neu.2010.1586] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Experimental traumatic brain injury (TBI) studies report the neuroprotective effects of female sex steroids on multiple mechanisms of injury, with the clinical assumption that women have hormonally mediated neuroprotection because of the endogenous presence of these hormones. Other literature indicates that testosterone may exacerbate injury. Further, stress hormone abnormalities that accompany critical illness may both amplify or blunt sex steroid levels. To better understand the role of sex steroid exposure in mediating TBI, we 1) characterized temporal profiles of serum gonadal and stress hormones in a population with severe TBI during the acute phases of their injury; and 2) used a biological systems approach to evaluate these hormones as biomarkers predicting global outcome. The study population was 117 adults (28 women; 89 men) with severe TBI. Serum samples (n=536) were collected for 7 days post-TBI for cortisol, progesterone, testosterone, estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Hormone data were linked with clinical data, including acute care mortality and Glasgow Outcome Scale (GOS) scores at 6 months. Hormone levels after TBI were compared to those in healthy controls (n=14). Group based trajectory analysis (TRAJ) was used to develop temporal hormone profiles that delineate distinct subpopulations in the cohort. Structural equations models were used to determine inter-relationships between hormones and outcomes within a multivariate model. Compared to controls, acute serum hormone levels were significantly altered after severe TBI. Changes in the post-TBI adrenal response and peripheral aromatization influenced hormone TRAJ profiles and contributed to the abnormalities, including increased estradiol in men and increased testosterone in women. In addition to older age and greater injury severity, increased estradiol and testosterone levels over time were associated with increased mortality and worse global outcome for both men and women. These findings represent a paradigm shift when thinking about the role of sex steroids in neuroprotection clinically after TBI.
Collapse
Affiliation(s)
- Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ambert N, Greget R, Haeberlé O, Bischoff S, Berger TW, Bouteiller JM, Baudry M. Computational studies of NMDA receptors: differential effects of neuronal activity on efficacy of competitive and non-competitive antagonists. ACTA ACUST UNITED AC 2010; 2:113-125. [PMID: 21572937 DOI: 10.2147/oab.s7246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
N-Methyl-D-Aspartate receptors (NMDARs) play important physiological as well as pathological roles in the central nervous system (CNS). While NMDAR competitive antagonists, such as D-2-Amino-5-Phosphopentanoic acid (AP5) have been shown to impair learning and memory, the non-competitive antagonist, memantine, is paradoxically beneficial in mild to moderate Alzheimer's disease (AD) patients. It has been proposed that differences in kinetic properties could account for antagonist functional differences. Here we present a new elaborated kinetic model of NMDARs that incorporates binding sites for the agonist (glutamate) and co-agonist (glycine), channel blockers, such as memantine and magnesium (Mg(2+)), as well as competitive antagonists. We first validated and optimized the parameters used in the model by comparing simulated results with a wide range of experimental data from the literature. We then evaluated the effects of stimulation frequency and membrane potential (Vm) on the characteristics of AP5 and memantine inhibition of NMDARs. Our results indicated that the inhibitory effects of AP5 were independent of Vm but decreased with increasing stimulation frequency. In contrast, memantine inhibitory effects decreased with both increasing Vm and stimulation frequency. They support the idea that memantine could provide tonic blockade of NMDARs under basal stimulation conditions without blocking their activation during learning. Moreover they underline the necessity of considering receptor kinetics and the value of the biosimulation approach to better understand mechanisms of drug action and to identify new ways of regulating receptor function.
Collapse
Affiliation(s)
- Nicolas Ambert
- Rhenovia Pharma, 20 C rue de Chemnitz, 68200 Mulhouse, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Bazarian JJ, Blyth B, Mookerjee S, He H, McDermott MP. Sex differences in outcome after mild traumatic brain injury. J Neurotrauma 2010; 27:527-39. [PMID: 19938945 DOI: 10.1089/neu.2009.1068] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to estimate the independent association of sex with outcome after mild traumatic brain injury (mTBI). We performed an analysis of a subset of an established cohort involving 1425 mTBI patients presenting to an academic emergency department (ED). The associations between sex and three outcomes determined 3 months after the initial ED visit were examined: post-concussive symptom (PCS) score (0, 1-5, 6-16, and >16), the number of days to return of normal activities (0, 1-7, and >7), and the number of days of work missed (0, 1-7,and >7). Logistic regression analyses were used to determine the relationship between sex and each outcome after controlling for 12 relevant subject-level variables. Of the 1425 subjects, 643 (45.1%) were female and 782 (54.9%) were male. Three months after mTBI, males had significantly lower odds of being in a higher PCS score category (odds ratio [OR] 0.62, 95% confidence interval [CI]: 0.50, 0.78); this association appeared to be more prominent during child-bearing years for females. Males and females did not significantly differ with respect to the odds of poorer outcome as defined by the number of days to return of normal activities or the number of days of work missed. Female sex is associated with significantly higher odds of poor outcome after mTBI, as measured by PCS score, after control for appropriate confounders. The observed pattern of peak disability for females during the child-bearing years suggests disruption of endogenous estrogen or progesterone production. Attempts to better understand how mTBI affects production of these hormones acutely after injury and during the recovery period may shed light on the mechanism behind poorer outcome among females and putative therapeutic interventions.
Collapse
Affiliation(s)
- Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
15
|
Nelson DW, Nyström H, MacCallum RM, Thornquist B, Lilja A, Bellander BM, Rudehill A, Wanecek M, Weitzberg E. Extended analysis of early computed tomography scans of traumatic brain injured patients and relations to outcome. J Neurotrauma 2010; 27:51-64. [PMID: 19698072 DOI: 10.1089/neu.2009.0986] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is responsible for up to 45% of in-hospital trauma mortality. Computed tomography (CT) is central to acute TBI diagnostics, and millions of brain CT scans are conducted yearly worldwide. Though many studies have addressed individual predictors of outcome from findings on CT scans, few have done so from a multivariate perspective. As these parameters are interrelated in a complex manner, there is a need for a better understanding of them in this context. CT scans from 861 TBI patients were reviewed according to an extensive protocol. An extended analysis of CT parameters with respect to outcome was performed using linear and non-linear methods. We identified complex interactions and mutual information in many of the parameters. Variables predicting death differ from those predicting unfavorable versus favorable outcomes (Glasgow Outcome Scale scores of 1-3 versus 4-5 [GOS]). The most important parameter for prediction of unfavorable outcome is the magnitude of midline shift. In fact, this parameter, as a continuous variable, is by itself a better predictor and is better calibrated than the Marshall CT score, even for predicting death. In addition, hematoma volumes are nearly co-linear with midline shift and can be substituted for it. A score of traumatic subarachnoid/intraventricular blood components adds substantially to model calibration. A CT scoring system geared toward dichotomous GOS scores is suggested. CT parameters were found to add 6-10% additional estimated explained variance in the presence of the important clinical variables of age, Glasgow Coma Scale score, and pupillary response. Finally we present a practical clinical "rule of thumb" to help predict the probability of unfavorable outcome using clinical and CT variables.
Collapse
Affiliation(s)
- David W Nelson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hatton J, Rosbolt B, Empey P, Kryscio R, Young B. Dosing and safety of cyclosporine in patients with severe brain injury. J Neurosurg 2008; 109:699-707. [PMID: 18826358 PMCID: PMC2770729 DOI: 10.3171/jns/2008/109/10/0699] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cyclosporine neuroprotection has been reported in brain injury models but safety and dosing guidelines have not been determined in humans with severe traumatic brain injury (TBI). The purpose of this investigation was to establish the safety of cyclosporine using 4 clinically relevant dosing schemes. METHODS The authors performed a prospective, blinded, placebo-controlled, randomized, dose-escalation trial of cyclosporine administration initiated within 8 hours of TBI (Glasgow Coma Scale score range 4-8; motor score range 2-5). Four dosing cohorts (8 patients treated with cyclosporine and 2 receiving placebo treatment per cohort) received cyclosporine (1.25-5 mg/kg/day) or placebo in 2 divided doses (Cohorts I-III) or continuous infusion (Cohort IV) over 72 hours. Adverse events and outcome were monitored for 6 months. RESULTS Forty patients were enrolled over 3 years (cyclosporine cohorts, 24 male and 8 female patients; placebo group, 8 male patients). Systemic trough concentrations were below 250 ng/ml during intermittent doses. Higher blood concentrations were observed in Cohorts III and IV. There was no significant difference in immunological effects, adverse events, infection, renal dysfunction, or seizures. Mortality rate was not affected by cyclosporine administration, independent of dose, compared with placebo (6 of 32 patients receiving cyclosporine and 2 of 8 receiving placebo died, p>0.05). At 6 months, a dose-related improvement in favorable outcome was observed in cyclosporine-treated patients (p<0.05). CONCLUSIONS In patients with acute TBI who received cyclosporine at doses up to 5 mg/kg/day, administered intravenously, with treatment initiated within 8 hours of injury, the rate of mortality or other adverse events was not significantly different from that of the placebo group.
Collapse
Affiliation(s)
- Jimmi Hatton
- The Spinal Cord and Brain Injury Research Center, Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0082, USA.
| | | | | | | | | |
Collapse
|
17
|
Stein DG, Wright DW, Kellermann AL. Does Progesterone Have Neuroprotective Properties? Ann Emerg Med 2008; 51:164-72. [PMID: 17588708 DOI: 10.1016/j.annemergmed.2007.05.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 04/26/2007] [Accepted: 05/01/2007] [Indexed: 11/23/2022]
Abstract
In this article, we review published preclinical and epidemiologic studies that examine progesterone's role in the central nervous system. Its effects on the reproductive and endocrine systems are well known, but a large and growing body of evidence, including a recently published pilot clinical trial, indicates that the hormone also exerts neuroprotective effects on the central nervous system. We now know that it is produced in the brain, for the brain, by neurons and glial cells in the central and peripheral nervous system of both male and female individuals. Laboratories around the world have reported that administering relatively large doses of progesterone during the first few hours to days after injury significantly limits central nervous system damage, reduces loss of neural tissue, and improves functional recovery. Although the research published to date has focused primarily on progesterone's effects on blunt traumatic brain injury, there is evidence that the hormone affords protection from several forms of acute central nervous system injury, including penetrating brain trauma, stroke, anoxic brain injury, and spinal cord injury. Progesterone appears to exert its protective effects by protecting or rebuilding the blood-brain barrier, decreasing development of cerebral edema, down-regulating the inflammatory cascade, and limiting cellular necrosis and apoptosis. All are plausible mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Donald G Stein
- Brain Research Laboratory, Department of Emergency Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
18
|
Davis DP, Douglas DJ, Smith W, Sise MJ, Vilke GM, Holbrook TL, Kennedy F, Eastman AB, Velky T, Hoyt DB. Traumatic brain injury outcomes in pre- and post- menopausal females versus age-matched males. J Neurotrauma 2006; 23:140-8. [PMID: 16503798 DOI: 10.1089/neu.2006.23.140] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gender differences in outcomes from major trauma have been described previously, and exogenous female hormone administration appears to be neuroprotective following traumatic brain injury (TBI). This analysis explored outcomes in pre- and post-menopausal females versus age-matched males. A total of 13,437 patients (n = 3,178 females, n = 10,259 males) with moderate-to-severe TBI (head AIS > or = 3) were identified from our county trauma registry. Overall mortality was similar between males and females (22% for both). Logistic regression was used to compare gender outcome differences, with a separate analysis performed for premenopausal (< 50 years) versus postmenopausal (> or = 50 years) patients, and after stratification by decade of life. No statistically significant difference in outcomes was observed for pre-menopausal females versus males (odds ratio [OR] 1.06; 95% confidence interval [CI] 0.83, 1.35; p = 0.633), but outcomes were significantly better in postmenopausal females versus males (OR 0.63, 95% CI 0.48-0.81, p < 0.001) after adjusting for age, mechanism of injury, Glasgow Coma Scale (GCS), hypotension (SBP < or = 90 mm Hg), head Abbreviated Injury Score (AIS), and Injury Severity Score (ISS). Stratification by decade of life revealed the gender survival differential inflection point to occur between ages 40-49 (OR 1.06, 95% CI 0.66-1.71, p = 0.798) and ages 50-59 (OR 0.38, 95% CI 0.20-0.74, p = 0.005). In addition, Revised Trauma Score and Injury Severity Score (TRISS) was used to calculate probability of survival (PS); all patients were then stratified by decade of life, and males and females were compared with regard to mean survival differential (outcome - PS). The identical pattern of improved outcomes in post-menopausal but not pre-menopausal females versus age-matched males was observed. These data suggest that endogenous female sex hormone production is not neuroprotective.
Collapse
Affiliation(s)
- Daniel P Davis
- Department of Emergency Medicine, UC San Diego, San Diego, California 92103-8676, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kirchhoff C, Stegmaier J, Bogner V, Buhmann S, Mussack T, Kreimeier U, Mutschler W, Biberthaler P. Intrathecal and Systemic Concentration of NT-proBNP in Patients with Severe Traumatic Brain Injury. J Neurotrauma 2006; 23:943-9. [PMID: 16774478 DOI: 10.1089/neu.2006.23.943] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Outcome of patients suffering from traumatic brain injury (TBI) depends on the development of secondary brain damage. In this context, recent studies underlined the role of the natriuretic peptides- atrial natriuretic peptide and brain natriuretic peptide (BNP)-in aneurysmatic subarachnoidal hemorrhage (SAH). Especially BNP correlates with intracranial pressure and clinical outcome after SAH. Since its role in TBI remains unclear, the intracranial and systemic concentrations of N-terminal (NT)-proBNP were analyzed in patients suffering from severe TBI. We measured NT-proBNP levels in cerebrospinal fluid (CSF) and serum of 14 patients suffering from severe TBI (GCS<or=8 points) and 10 healthy control patients, using proBNP assay (Roche Diagnostics). Samples were collected after placement of a ventricular catheter, and at 12, 24, 48, and 72 h after TBI. CSF/serum albumin ratio (Q<a) was daily calculated. At 90 days after TBI, outcome was evaluated using the Glasgow Outcome Scale (GOS). In patients exhibiting a mean ICP of >15 mm Hg (n=6), the serum (800+/-150 pg/mL) and CSF levels (55+/-9 pg/mL) of NT-proBNP were significantly increased after 24 h, as compared to patients with ICP<or=15 mm of Hg (n=8) as well as to control group. However, Qa as well as GOS did not significantly differ among both groups. For the first time, we evaluated intrathecal and systemic NT-proBNP concentrations in patients suffering from severe TBI. Interestingly, NT-proBNP in CSF and serum was significantly elevated in patients exhibiting an ICP of >15 mm Hg. Further studies are currently performed to elucidate the physiologic role of NT-proBNP in TBI.
Collapse
Affiliation(s)
- Chlodwig Kirchhoff
- Chirurgische Klinik und Poliklinik, Klinikum Innenstadt, Ludwig-Maximilians-Universitaet, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|