1
|
Szczygielski J, Hubertus V, Kruchten E, Müller A, Albrecht LF, Schwerdtfeger K, Oertel J. Prolonged course of brain edema and neurological recovery in a translational model of decompressive craniectomy after closed head injury in mice. Front Neurol 2023; 14:1308683. [PMID: 38053795 PMCID: PMC10694459 DOI: 10.3389/fneur.2023.1308683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Background The use of decompressive craniectomy in traumatic brain injury (TBI) remains a matter of debate. According to the DECRA trial, craniectomy may have a negative impact on functional outcome, while the RescueICP trial revealed a positive effect of surgical decompression, which is evolving over time. This ambivalence of craniectomy has not been studied extensively in controlled laboratory experiments. Objective The goal of the current study was to investigate the prolonged effects of decompressive craniectomy (both positive and negative) in an animal model. Methods Male mice were assigned to the following groups: sham, decompressive craniectomy, TBI and TBI followed by craniectomy. The analysis of functional outcome was performed at time points 3d, 7d, 14d and 28d post trauma according to the Neurological Severity Score and Beam Balance Score. At the same time points, magnetic resonance imaging was performed, and brain edema was analyzed. Results Animals subjected to both trauma and craniectomy presented the exacerbation of the neurological impairment that was apparent mostly in the early course (up to 7d) after injury. Decompressive craniectomy also caused a significant increase in brain edema volume (initially cytotoxic with a secondary shift to vasogenic edema and gliosis). Notably, delayed edema plus gliosis appeared also after decompression even without preceding trauma. Conclusion In prolonged outcomes, craniectomy applied after closed head injury in mice aggravates posttraumatic brain edema, leading to additional functional impairment. This effect is, however, transient. Treatment options that reduce brain swelling after decompression may accelerate neurological recovery and should be explored in future experiments.
Collapse
Affiliation(s)
- Jacek Szczygielski
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Instutute of Neuropathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Medical Sciences, University of Rzeszów, Rzeszow, Poland
| | - Vanessa Hubertus
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| | - Eduard Kruchten
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
- Institute of Interventional and Diagnostic Radiology, Karlsruhe, Germany
| | - Andreas Müller
- Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Lisa Franziska Albrecht
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
2
|
Zusman BE, Kochanek PM, Jha RM. Cerebral Edema in Traumatic Brain Injury: a Historical Framework for Current Therapy. Curr Treat Options Neurol 2020; 22:9. [PMID: 34177248 PMCID: PMC8223756 DOI: 10.1007/s11940-020-0614-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The purposes of this narrative review are to (1) summarize a contemporary view of cerebral edema pathophysiology, (2) present a synopsis of current management strategies in the context of their historical roots (many of which date back multiple centuries), and (3) discuss contributions of key molecular pathways to overlapping edema endophenotypes. This may facilitate identification of important therapeutic targets. RECENT FINDINGS Cerebral edema and resultant intracranial hypertension are major contributors to morbidity and mortality following traumatic brain injury. Although Starling forces are physical drivers of edema based on differences in intravascular vs extracellular hydrostatic and oncotic pressures, the molecular pathophysiology underlying cerebral edema is complex and remains incompletely understood. Current management protocols are guided by intracranial pressure measurements, an imperfect proxy for cerebral edema. These include decompressive craniectomy, external ventricular drainage, hyperosmolar therapy, hypothermia, and sedation. Results of contemporary clinical trials assessing these treatments are summarized, with an emphasis on the gap between intermediate measures of edema and meaningful clinical outcomes. This is followed by a brief statement summarizing the most recent guidelines from the Brain Trauma Foundation (4th edition). While many molecular mechanisms and networks contributing to cerebral edema after TBI are still being elucidated, we highlight some promising molecular mechanism-based targets based on recent research including SUR1-TRPM4, NKCC1, AQP4, and AVP1. SUMMARY This review outlines the origins of our understanding of cerebral edema, chronicles the history behind many current treatment approaches, and discusses promising molecular mechanism-based targeted treatments.
Collapse
Affiliation(s)
- Benjamin E. Zusman
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute for Clinical Research Education, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Children’s Hospital of Pittsburgh, UPMC, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
| | - Ruchira M. Jha
- Clinical and Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, John G. Rangos Research Center, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Abstract
We explored the dynamic features of brain edema after traumatic brain injury (TBI) using healthy adult male Wistar rats. After inducing moderate brain injuries in the rats, we divided them randomly among seven groups on the basis of the time elapsed between TBI and examination: 1, 6, 12, 24, 48, 72, and 168 h. All rats were scanned using diffusion-weighted imaging (DWI) to observe tissue changes in the contusion penumbra (CP) after TBI. Immunoglobulin G expression was also detected. At 1 h after TBI, there was an annular light-colored region in the CP where the intercellular space was enlarged, suggesting vasogenic edema. At 6 h, the cells expanded, their nuclei shrank, and the cytoplasm was replaced by vacuoles, indicating intracellular edema. Vasogenic edema and intracellular edema increased 12 h after TBI, but decreased 24 h after TBI, with vasogenic edema increasing 48 h after TBI. By 72 h after TBI, intracellular edema dominated until resolution of all edema by 168 h after TBI. DWI indicated that the relative apparent diffusion coefficient increased markedly at 1 h after TBI, but was reduced at 6 and 12 h after TBI. At 48 h, relative apparent diffusion coefficient increased gradually and then declined at 72 h. In rats, TBI-related changes include dynamic variations in intracellular and vasogenic edema severity. Routine MRI and DWI examinations do not distinguish between the center of trauma and CP; however, the apparent diffusion coefficient diagram can portray variations in CP edema type and degree at different time-points following TBI.
Collapse
Affiliation(s)
- Huanhuan Ren
- Department of Radiology, Chongqing Seventh People's Hospital, Chongqing, China
| | | |
Collapse
|
4
|
Wilkes S, McCormack E, Kenney K, Stephens B, Passo R, Harburg L, Silverman E, Moore C, Bogoslovsky T, Pham D, Diaz-Arrastia R. Evolution of Traumatic Parenchymal Intracranial Hematomas (ICHs): Comparison of Hematoma and Edema Components. Front Neurol 2018; 9:527. [PMID: 30022968 PMCID: PMC6040600 DOI: 10.3389/fneur.2018.00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Abstract
This study seeks to quantitatively assess evolution of traumatic ICHs over the first 24 h and investigate its relationship with functional outcome. Early expansion of traumatic intracranial hematoma (ICH) is common, but previous studies have focused on the high density (blood) component. Hemostatic therapies may increase the risk of peri-hematoma infarction and associated increased cytotoxic edema. Assessing the magnitude and evolution of ICH and edema represented by high and low density components on computerized tomography (CT) may be informative for designing therapies targeted at traumatic ICH. CT scans from participants in the COBRIT (Citicoline Brain Injury Trial) study were analyzed using MIPAV software. CT scans from patients with non-surgical intraparenchymal ICHs at presentation and approximately 24 h later (±12 h) were selected. Regions of high density and low density were quantitatively measured. The relationship between volumes of high and low density were compared to several outcome measures, including Glasgow Outcome Score-Extended (GOSE) and Disability Rating Score (DRS). Paired scans from 84 patients were analyzed. The median time between the first and second scan was 22.79 h (25%ile 20.11 h; 75%ile 27.49 h). Over this time frame, hematoma and edema volumes increased >50% in 34 (40%) and 46 (55%) respectively. The correlation between the two components was low (r = 0.39, p = 0.002). There was a weak correlation between change in edema volume and GOSE at 6 months (r = 0.268, p = 0.037), change in edema volume and DRS at 3 and 6 months (r = -0.248, p = 0.037 and r = 0.358, p = 0.005, respectively), change in edema volume and COWA at 6 months (r = 0.272, p = 0.049), and between final edema volume and COWA at 6 months (r = 0.302, p = 0.028). To conclude, both high density and low density components of traumatic ICHs expand significantly in the first 2 days after TBI. In our study, there does not appear to be a relationship between hematoma volume or hematoma expansion and functional outcome, while there is a weak relationship between edema expansion and functional outcome.
Collapse
Affiliation(s)
- Sean Wilkes
- Department of Behavioral Health, Tripler Army Medical Center, Honolulu, HI, United States
| | - Erin McCormack
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kimbra Kenney
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Brian Stephens
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ross Passo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Leah Harburg
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Erika Silverman
- Department of Neurology, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Carol Moore
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Tanya Bogoslovsky
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Ramon Diaz-Arrastia
- Department of Neurology, Penn Presbyterian Medical Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Thelin EP, Frostell A, Mulder J, Mitsios N, Damberg P, Aski SN, Risling M, Svensson M, Morganti-Kossmann MC, Bellander BM. Lesion Size Is Exacerbated in Hypoxic Rats Whereas Hypoxia-Inducible Factor-1 Alpha and Vascular Endothelial Growth Factor Increase in Injured Normoxic Rats: A Prospective Cohort Study of Secondary Hypoxia in Focal Traumatic Brain Injury. Front Neurol 2016; 7:23. [PMID: 27014178 PMCID: PMC4780037 DOI: 10.3389/fneur.2016.00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hypoxia following traumatic brain injury (TBI) is a severe insult shown to exacerbate the pathophysiology, resulting in worse outcome. The aim of this study was to investigate the effects of a hypoxic insult in a focal TBI model by monitoring brain edema, lesion volume, serum biomarker levels, immune cell infiltration, as well as the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF). MATERIALS AND METHODS Female Sprague-Dawley rats (n = 73, including sham and naive) were used. The rats were intubated and mechanically ventilated. A controlled cortical impact device created a 3-mm deep lesion in the right parietal hemisphere. Post-injury, rats inhaled either normoxic (22% O2) or hypoxic (11% O2) mixtures for 30 min. The rats were sacrificed at 1, 3, 7, 14, and 28 days post-injury. Serum was collected for S100B measurements using ELISA. Ex vivo magnetic resonance imaging (MRI) was performed to determine lesion size and edema volume. Immunofluorescence was employed to analyze neuronal death, changes in cerebral macrophage- and neutrophil infiltration, microglia proliferation, apoptosis, complement activation (C5b9), IgG extravasation, HIF-1α, and VEGF. RESULTS The hypoxic group had significantly increased blood levels of lactate and decreased pO2 (p < 0.0001). On MRI post-traumatic hypoxia resulted in larger lesion areas (p = 0.0173), and NeuN staining revealed greater neuronal loss (p = 0.0253). HIF-1α and VEGF expression was significantly increased in normoxic but not in hypoxic animals (p < 0.05). A trend was seen for serum levels of S100B to be higher in the hypoxic group at 1 day after trauma (p = 0.0868). No differences were observed between the groups in cytotoxic and vascular edema, IgG extravasation, neutrophils and macrophage aggregation, microglia proliferation, or C5b-9 expression. CONCLUSION Hypoxia following focal TBI exacerbated the lesion size and neuronal loss. Moreover, there was a tendency to higher levels of S100B in the hypoxic group early after injury, indicating a potential validity as a biomarker of injury severity. In the normoxic group, the expression of HIF-1α and VEGF was found elevated, possibly indicative of neuro-protective responses occurring in this less severely injured group. Further studies are warranted to better define the pathophysiology of post-TBI hypoxia.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Nicholas Mitsios
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Peter Damberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Karolinska Experimental Research and Imaging Center, Karolinska Universitetssjukhuset Solna, Stockholm, Sweden
| | - Sahar Nikkhou Aski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Karolinska Experimental Research and Imaging Center, Karolinska Universitetssjukhuset Solna, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Cristina Morganti-Kossmann
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Department of Child Health, Barrow Neurological Institute, Phoenix Children's Hospital, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Martínez-Valverde T, Vidal-Jorge M, Martínez-Saez E, Castro L, Arikan F, Cordero E, Rădoi A, Poca MA, Simard JM, Sahuquillo J. Sulfonylurea Receptor 1 in Humans with Post-Traumatic Brain Contusions. J Neurotrauma 2015; 32:1478-87. [PMID: 26398596 DOI: 10.1089/neu.2014.3706] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic brain contusions (PTBCs) are traditionally considered primary injuries and can increase in size, generate perilesional edema, cause mass effect, induce neurological deterioration, and cause death. Most patients experience a progressive increase in pericontusional edema, and nearly half, an increase in the hemorrhagic component itself. The underlying molecular pathophysiology of contusion-induced brain edema and hemorrhagic progression remains poorly understood. The aim of this study was to investigate sulfonylurea 1/transient receptor potential melastatin 4 (SUR1-TRPM4) ion channel SUR1 expression in various cell types (neurons, astrocytes, endothelial cells, microglia, macrophages, and neutrophils) of human brain contusions and whether SUR1 up-regulation was related to time postinjury. Double immunolabeling of SUR1 and cell-type- specific proteins was performed in 26 specimens from traumatic brain injury patients whose lesions were surgically evacuated. Three samples from limited brain resections performed for accessing extra-axial skull-base tumors or intraventricular lesions were controls. We found SUR1 was significantly overexpresed in all cell types and was especially prominent in neurons and endothelial cells (ECs). The temporal pattern depended on cell type: 1) In neurons, SUR1 increased within 48 h of injury and stabilized thereafter; 2) in ECs, there was no trend; 3) in glial cells and microglia/macrophages, a moderate increase was observed over time; and 4) in neutrophils, it decreased with time. Our results suggest that up-regulation of SUR1 in humans point to this channel as one of the important molecular players in the pathophysiology of PTBCs. Our findings reveal opportunities to act therapeutically on the mechanisms of growth of traumatic contusions and therefore reduce the number of patients with neurological deterioration and poor neurological outcomes.
Collapse
Affiliation(s)
- Tamara Martínez-Valverde
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Marian Vidal-Jorge
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Elena Martínez-Saez
- 2 Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Lidia Castro
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Fuat Arikan
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esteban Cordero
- 3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreea Rădoi
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain
| | - Maria-Antonia Poca
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Marc Simard
- 4 Departments of Neurosurgery, Physiology and Pathology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Juan Sahuquillo
- 1 Neurotraumatology and Neurosurgery Research Unit (UNINN), Universitat Autònoma de Barcelona , Barcelona, Spain .,3 Department of Neurosurgery, Vall d'Hebron University Hospital , Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
|
8
|
Huang SJ, Chang L, Han YY, Lee YC, Tu YK. Efficacy and safety of hypertonic saline solutions in the treatment of severe head injury. ACTA ACUST UNITED AC 2006; 65:539-46; discussion 546. [PMID: 16720165 DOI: 10.1016/j.surneu.2005.11.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 11/02/2005] [Indexed: 10/24/2022]
Abstract
BACKGROUND The present study was undertaken to evaluate the efficacy and safety of hypertonic saline (HS) in the treatment of intracranial hypertension after severe head injury. METHODS This prospective, observational study was performed in an 11-bed neurosurgery intensive care unit of a teaching hospital. From February 2002 to September 2004, 18 severely head-injured patients with elevated intracranial pressure (ICP) and Glasgow Coma Scale scores of 5 to 8 (mean, 5.9 +/- 1.2) were admitted to the unit and treated according to a standard protocol. One dose per day of 3% saline was administered by rapid infusion (300 mL/20 min) when ICP values exceeded 20 mm Hg. After infusion, cerebral blood flow, ICP, blood pressure, end-tidal carbon dioxide, and heart rate were monitored continuously for 60 minutes and recorded. Serum osmolarity, sodium, potassium, chloride, arterial carbon dioxide pressure, arterial oxygen pressure, hemoglobin, lactic acid, and pH were measured immediately before infusion (zero time) and 20 and 60 minutes after infusion. Mean arterial pressure, cerebral perfusion pressure (CPP), mean flow velocity (MFV), and pulsatility index (PI) were also recorded and analyzed. RESULTS Intracranial pressure fell immediately after initiation of infusion with further significant decreases observed at 20 and 60 minutes (30.4 +/- 8.5, 24.3 +/- 7.4, and 23.8 +/- 8.3 mm Hg, respectively; P < .01). At these respective times CPP increased significantly (78.7 +/- 8.7, 83.2 +/- 7.8, and 87.2 +/- 12.8 mm Hg), PI dropped rapidly (1.51 +/- 0.42, 1.38 +/- 0.32, and 1.34 +/- 0.33) and MFV increased (66.26 +/- 25.91, 71.92 +/- 28.13, and 68.74 +/- 28.44). Serum sodium increased from 141.3 +/- 7.2 to 146.3 +/- 7.2 mmol/L after 20 minutes and returned to 144.3 +/- 7.36 mmol/L at 60 minutes. Potassium concentrations decreased significantly from 3.9 +/- 0.39 to 3.55 +/- 0.35 mmol/L after 20 minutes (P < .01). Lactic acid values at 0, 20, and 60 minutes were 1.6 +/- 0.5, 1.47 +/- 0.48, and 1.38 +/- 0.53 mmol/L, respectively (P < .01). CONCLUSION Rapid infusion of single dose daily of HS is a safe alternative for the treatment of elevated ICP in severe head injury. Further evaluations of long-term consequences and complications and of maximal tolerance to this treatment are required.
Collapse
Affiliation(s)
- Sheng-Jean Huang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan, ROC
| | | | | | | | | |
Collapse
|
9
|
Abstract
Brain edema leading to an expansion of brain volume has a crucial impact on morbidity and mortality following traumatic brain injury (TBI) as it increases intracranial pressure, impairs cerebral perfusion and oxygenation, and contributes to additional ischemic injuries. Classically, two major types of traumatic brain edema exist: "vasogenic" due to blood-brain barrier (BBB) disruption resulting in extracellular water accumulation and "cytotoxic/cellular" due to sustained intracellular water collection. A third type, "osmotic" brain edema is caused by osmotic imbalances between blood and tissue. Rarely after TBI do we encounter a "hydrocephalic edema/interstitial" brain edema related to an obstruction of cerebrospinal fluid outflow. Following TBI, various mediators are released which enhance vasogenic and/or cytotoxic brain edema. These include glutamate, lactate, H(+), K(+), Ca(2+), nitric oxide, arachidonic acid and its metabolites, free oxygen radicals, histamine, and kinins. Thus, avoiding cerebral anaerobic metabolism and acidosis is beneficial to control lactate and H(+), but no compound inhibiting mediators/mediator channels showed beneficial results in conducted clinical trials, despite successful experimental studies. Hence, anti-edematous therapy in TBI patients is still symptomatic and rather non-specific (e.g. mannitol infusion, controlled hyperventilation). For many years, vasogenic brain edema was accepted as the prevalent edema type following TBI. The development of mechanical TBI models ("weight drop," "fluid percussion injury," and "controlled cortical impact injury") and the use of magnetic resonance imaging, however, revealed that "cytotoxic" edema is of decisive pathophysiological importance following TBI as it develops early and persists while BBB integrity is gradually restored. These findings suggest that cytotoxic and vasogenic brain edema are two entities which can be targeted simultaneously or according to their temporal prevalence.
Collapse
Affiliation(s)
- A W Unterberg
- Department of Neurosurgery, Ruprecht-Karls University of Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|