1
|
Travis ZD, Sherchan P, Hayes WK, Zhang JH. Surgically-induced brain injury: where are we now? Chin Neurosurg J 2019; 5:29. [PMID: 32922928 PMCID: PMC7398187 DOI: 10.1186/s41016-019-0181-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Neurosurgical procedures cause inevitable brain damage from the multitude of surgical manipulations utilized. Incisions, retraction, thermal damage from electrocautery, and intraoperative hemorrhage cause immediate and long-term brain injuries that are directly linked to neurosurgical operations, and these types of injuries, collectively, have been termed surgical brain injury (SBI). For the past decade, a model developed to study the underlying brain pathologies resulting from SBI has provided insight on cellular mechanisms and potential therapeutic targets. This model, as seen in a rat, mouse, and rabbit, mimics a neurosurgical operation and causes commonly encountered post-operative complications such as brain edema, neuroinflammation, and hemorrhage. In this review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, the importance of applying therapeutics before neurosurgical procedures (i.e., preconditioning), and the new direction of applying venom-derived proteins to attenuate SBI.
Collapse
Affiliation(s)
- Zachary D Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - William K Hayes
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| |
Collapse
|
2
|
Guan Z, Tao Y, Zhang X, Guo Q, Liu Y, Zhang Y, Wang Y, ji G, Wu G, Wang N, Yang H, Yu Z, Guo J, Zhou H. G-CSF and cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease: Preventive intervention effects and underlying mechanisms. CNS Neurosci Ther 2017; 23:462-474. [PMID: 28374506 PMCID: PMC6492719 DOI: 10.1111/cns.12691] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/23/2022] Open
Abstract
AIMS Although cognitive dysfunction is a common neurological complication in elderly patients with diabetes, the mechanisms underlying this relationship remain unclear, and effective preventive interventions have yet to be developed. Thus, this study investigated the preventive effects and mechanisms of action associated with granulocyte colony-stimulating factor (G-CSF) on cognitive dysfunction in elderly diabetic mice with cerebral small vessel disease. METHODS This study included 40 male db/db diabetic and wild-type (WT) mice that were categorized into the following four groups at the age of 3 weeks: db/db group (DG), db/db+G-CSF group (DGG), WT group (WG), and WT+G-CSF group (WGG). The mice were fed normal diets for 4 months and then given G-CSF (75 μg/kg) via intraperitoneal injections for 1 month. At 7.5 months of age, the cognitive abilities of the mice were assessed with the Y-maze test and the Social Choice Test; body weight, blood pressure (BP), and blood glucose measurements were obtained throughout the study. Brain imaging and blood oxygen level-dependent (BOLD) contrast imaging analyses were performed with a small animal magnetic resonance imaging (MRI) system, autophagosome levels were detected with a transmission electron microscope (TEM), hippocampal neurons were assessed with hematoxylin and eosin (HE) staining, and protein expressions and distributions were evaluated using immunohistochemistry and Western blot analyses. RESULTS (i) The body weight and blood glucose levels of the DG and DGG mice were significantly higher than those of the WG and WGG mice; (ii) social choice and spatial memory capabilities were significantly reduced in DG mice but were recovered by G-CSF in DGG mice; (iii) the MRI scans revealed multiple lacunar lesions and apparent hippocampal atrophy in the brains of DG mice, but G-CSF reduced the number of lacunar lesions and ameliorated hippocampal atrophy; (iv) the MRI-BOLD scans showed a downward trend in whole-brain activity and reductions in the connectivities of the hippocampus and amygdala with subcortical structures in DG mice, but G-CSF clearly improved the altered brain activity as well as the connectivity of the hippocampus in DGG mice; (v) HE staining revealed fewer neurons in the hippocampus in DG mice; (vi) TEM analyses revealed significantly fewer autophagosomes in the hippocampi of DG mice, but G-CSF did not increase these numbers; (vii) there were significant reductions in mechanistic target of rapamycin (mTOR) and LC3-phosphatidylethanolamine conjugate (LC3)-II/I levels in the hippocampi of DG mice, whereas p62 was upregulated, and G-CSF significantly enhanced the levels of Beclin1, mTOR, and LC-II/I in DGG mice; and (viii) G-CSF significantly reversed increases in nuclear factor κB (NF-κB) protein levels in DG but not in WG mice. CONCLUSIONS In this study, aged diabetic mice were prone to cognitive dysfunction and cerebral small vessel disease. However, administration of G-CSF significantly improved cognitive function in elderly db/db diabetic mice, and this change was likely related to the regulation of autophagy and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhu‐Fei Guan
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Ying‐Hong Tao
- Department of General MedicineOuyang Community Health Service CenterHongkou DistrictShanghaiChina
| | - Xiao‐Ming Zhang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Qi‐Lin Guo
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Ying‐Chao Liu
- Department of NeurosurgeryShandong Provincial HospitalJinanChina
| | - Yu Zhang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Yan‐Mei Wang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Gang ji
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Guo‐Feng Wu
- Department of Emergency NeurologyAffiliated HospitalGuiyang Medical UniversityGuiyangChina
| | - Na‐Na Wang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Hao Yang
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Zhong‐Yu Yu
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| | - Jing‐Chun Guo
- State Key Laboratory of Medical NeurobiologyInstitute of Brain ScienceFudan UniversityShanghaiChina
| | - Hou‐Guang Zhou
- Department of Geriatric NeurologyHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Kang MH, Park HM. Administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF) for the intracranial hemorrhage in two dogs: a case report. IRANIAN JOURNAL OF VETERINARY RESEARCH 2016; 17:62-65. [PMID: 27656233 PMCID: PMC4898024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 06/06/2023]
Abstract
Two dogs with generalized seizures were evaluated. The dogs were diagnosed with traumatic intracranial hemorrhages based on the history, neurological examinations, and magnetic resonance imaging (MRI) of the brain. Treatment was started with oxygen, prednisolone and anticonvulsant agents. No further seizure activity was observed after treatment in both dogs, however cushing reflex was detected in case 1 and a left-sided hemi-paresis was detected in case 2. Further supportive treatment with recombinant human granulocyte colony-stimulating factor (rhG-CSF) was attempted. No abnormal signs were noted in either of the dogs and no recurrence was noted 16 and 14 months later, in case 1 and 2, respectively. These cases indicate that a combination of rhG-CSF treatment with previous therapy could be used in dogs with traumatic brain injury.
Collapse
Affiliation(s)
| | - H. M. Park
- Correspondence: H. M. Park, Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul 143-701, South Korea. E-mail:
| |
Collapse
|
4
|
Granulocyte-Colony Stimulating Factor Increases Cerebral Blood Flow via a NO Surge Mediated by Akt/eNOS Pathway to Reduce Ischemic Injury. ScientificWorldJournal 2015; 2015:657932. [PMID: 26146654 PMCID: PMC4471400 DOI: 10.1155/2015/657932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) protects brain from ischemic/reperfusion (I/R) injury, and inhibition of nitric oxide (NO) synthases partially reduces G-CSF protection. We thus further investigated the effects of G-CSF on ischemia-induced NO production and its consequence on regional cerebral blood flow (rCBF) and neurological deficit. Endothelin-1 (ET-1) microinfused above middle cerebral artery caused a rapid reduction of rCBF (ischemia) which lasted for 30 minutes and was followed by a gradual recovery of blood flow (reperfusion) within the striatal region. Regional NO concentration increased rapidly (NO surge) during ischemia and recovered soon to the baseline. G-CSF increased rCBF resulting in shorter ischemic duration and an earlier onset of reperfusion. The enhancement of the ischemia-induced NO by G-CSF accompanied by elevation of phospho-Akt and phospho-eNOS was noted, suggesting an activation of Akt/eNOS. I/R-induced infarct volume and neurological deficits were also reduced by G-CSF treatment. Inhibition of NO synthesis by L-NG-Nitroarginine Methyl Ester (L-NAME) significantly reduced the effects of G-CSF on rCBF, NO surge, infarct volume, and neurological deficits. We conclude that G-CSF increases rCBF through a NO surge mediated by Akt/eNOS, which partially contributes to the beneficial effect of G-CSF on brain I/R injury.
Collapse
|
5
|
Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, Song S, Kaneko Y, Borlongan CV. Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One 2014; 9:e90953. [PMID: 24621603 PMCID: PMC3951247 DOI: 10.1371/journal.pone.0090953] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/06/2014] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with neuro-inflammation, debilitating sensory-motor deficits, and learning and memory impairments. Cell-based therapies are currently being investigated in treating neurotrauma due to their ability to secrete neurotrophic factors and anti-inflammatory cytokines that can regulate the hostile milieu associated with chronic neuroinflammation found in TBI. In tandem, the stimulation and mobilization of endogenous stem/progenitor cells from the bone marrow through granulocyte colony stimulating factor (G-CSF) poses as an attractive therapeutic intervention for chronic TBI. Here, we tested the potential of a combined therapy of human umbilical cord blood cells (hUCB) and G-CSF at the acute stage of TBI to counteract the progressive secondary effects of chronic TBI using the controlled cortical impact model. Four different groups of adult Sprague Dawley rats were treated with saline alone, G-CSF+saline, hUCB+saline or hUCB+G-CSF, 7-days post CCI moderate TBI. Eight weeks after TBI, brains were harvested to analyze hippocampal cell loss, neuroinflammatory response, and neurogenesis by using immunohistochemical techniques. Results revealed that the rats exposed to TBI treated with saline exhibited widespread neuroinflammation, impaired endogenous neurogenesis in DG and SVZ, and severe hippocampal cell loss. hUCB monotherapy suppressed neuroinflammation, nearly normalized the neurogenesis, and reduced hippocampal cell loss compared to saline alone. G-CSF monotherapy produced partial and short-lived benefits characterized by low levels of neuroinflammation in striatum, DG, SVZ, and corpus callosum and fornix, a modest neurogenesis, and a moderate reduction of hippocampal cells loss. On the other hand, combined therapy of hUCB+G-CSF displayed synergistic effects that robustly dampened neuroinflammation, while enhancing endogenous neurogenesis and reducing hippocampal cell loss. Vigorous and long-lasting recovery of motor function accompanied the combined therapy, which was either moderately or short-lived in the monotherapy conditions. These results suggest that combined treatment rather than monotherapy appears optimal for abrogating histophalogical and motor impairments in chronic TBI.
Collapse
Affiliation(s)
- Sandra A. Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Kazutaka Shinozuka
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Hiroto Ishikawa
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- Office of Research and Innovation, University of South Florida, Tampa, Florida, United States of America
| | - Juan Sanchez-Ramos
- James Haley Veterans Affairs Medical Center, Tampa, Florida, United States of America
- Department of Neurology, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Shijie Song
- James Haley Veterans Affairs Medical Center, Tampa, Florida, United States of America
- Department of Neurology, University of South Florida, Tampa, Florida, United States of America
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States of America
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Dodd S, Maes M, Anderson G, Dean OM, Moylan S, Berk M. Putative neuroprotective agents in neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013. [PMID: 23178231 DOI: 10.1016/j.pnpbp.2012.11.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders.
Collapse
Affiliation(s)
- Seetal Dodd
- School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Granulocyte-colony stimulating factor in combination with stem cell factor confers greater neuroprotection after hypoxic-ischemic brain damage in the neonatal rats than a solitary treatment. Transl Stroke Res 2012; 4:171-8. [PMID: 23565130 DOI: 10.1007/s12975-012-0225-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is a devastating condition resulting in neuronal cell death and often culminates in neurological deficits. Granulocyte-colony stimulating factor (G-CSF) has been shown to have neuroprotective activity via inhibition of apoptosis and inflammation in various stroke models. Stem cell factor (SCF) regulates hematopoietic stem cells in the bone marrow and has been reported to have neuroprotective properties in an experimental ischemic stroke model. In this study we aim to determine the protective effects of G-CSF in combination with SCF treatment after experimental HI. Seven-day old Sprague-Dawley rats were subjected to unilateral carotid artery ligation followed by 2.5 hours of hypoxia. Animals were randomly assigned to five groups: Sham (n=8), Vehicle (n=8), HI with G-CSF treatment (n=9), HI with SCF treatment (n=9) and HI with G-CSF+SCF treatment (coadministration group; n=10). G-CSF (50 µg/kg), SCF (50 µg/kg) and G-CSF+SCF (50 µg/kg) were administered intraperitoneally 1 hour post HI followed by daily injection for 4 consecutive days (five total injections). Animals were euthanized 14 days after HI for neurological testing. Additionally assessment of brain, heart, liver, spleen and kidney atrophy was performed. Both G-CSF and G-CSF+SCF treatments improved body growth and decreased brain atrophy at 14 days post HI. No significant differences were found in the peripheral organ weights between groups. Finally, the G-CSF+SCF coadministration group showed significant improvement in neurological function. Our data suggest that administration of G-CSF in combination with SCF not only prevented brain atrophy but also significantly improved neurological function.
Collapse
|