1
|
Standoli S, Rapino C, Di Meo C, Rudowski A, Kämpfer-Kolb N, Volk LM, Thomas D, Trautmann S, Schreiber Y, Meyer zu Heringdorf D, Maccarrone M. Sphingosine Kinases at the Intersection of Pro-Inflammatory LPS and Anti-Inflammatory Endocannabinoid Signaling in BV2 Mouse Microglia Cells. Int J Mol Sci 2023; 24:8508. [PMID: 37239854 PMCID: PMC10217805 DOI: 10.3390/ijms24108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play important roles in brain homeostasis as well as in neuroinflammation, neurodegeneration, neurovascular diseases, and traumatic brain injury. In this context, components of the endocannabinoid (eCB) system have been shown to shift microglia towards an anti-inflammatory activation state. Instead, much less is known about the functional role of the sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) system in microglia biology. In the present study, we addressed potential crosstalk of the eCB and the S1P systems in BV2 mouse microglia cells challenged with lipopolysaccharide (LPS). We show that URB597, the selective inhibitor of fatty acid amide hydrolase (FAAH)-the main degradative enzyme of the eCB anandamide-prevented LPS-induced production of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β), and caused the accumulation of anandamide itself and eCB-like molecules such as oleic acid and cis-vaccenic acid ethanolamide, palmitoylethanolamide, and docosahexaenoyl ethanolamide. Furthermore, treatment with JWH133, a selective agonist of the eCB-binding cannabinoid 2 (CB2) receptor, mimicked the anti-inflammatory effects of URB597. Interestingly, LPS induced transcription of both SphK1 and SphK2, and the selective inhibitors of SphK1 (SLP7111228) and SphK2 (SLM6031434) strongly reduced LPS-induced TNFα and IL-1β production. Thus, the two SphKs were pro-inflammatory in BV2 cells in a non-redundant manner. Most importantly, the inhibition of FAAH by URB597, as well as the activation of CB2 by JWH133, prevented LPS-stimulated transcription of SphK1 and SphK2. These results present SphK1 and SphK2 at the intersection of pro-inflammatory LPS and anti-inflammatory eCB signaling, and suggest the further development of inhibitors of FAAH or SphKs for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sara Standoli
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Cinzia Rapino
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Camilla Di Meo
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Agnes Rudowski
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Nicole Kämpfer-Kolb
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Luisa Michelle Volk
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation, Scientific Institute for Research, Hospitalization and Healthcare, 00143 Rome, Italy
| |
Collapse
|
2
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
4
|
Vestri A, Pierucci F, Frati A, Monaco L, Meacci E. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis? Front Pharmacol 2017. [PMID: 28626422 PMCID: PMC5454082 DOI: 10.3389/fphar.2017.00296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is characterized by a peculiar mechanism of action. In fact, S1P, which is produced inside the cell, can act as an intracellular mediator, whereas after its export outside the cell, it can act as ligand of specific G-protein coupled receptors, which were initially named endothelial differentiation gene (Edg) and eventually renamed sphingosine 1-phosphate receptors (S1PRs). Among the five S1PR subtypes, S1PR1, S1PR2 and S1PR3 isoforms show broad tissue gene expression, while S1PR4 is primarily expressed in immune system cells, and S1PR5 is expressed in the central nervous system. There is accumulating evidence for the important role of S1P as a mediator of many processes, such as angiogenesis, carcinogenesis and immunity, and, ultimately, fibrosis. After a tissue injury, the imbalance between the production of extracellular matrix (ECM) and its degradation, which occurs due to chronic inflammatory conditions, leads to an accumulation of ECM and, consequential, organ dysfunction. In these pathological conditions, many factors have been described to act as pro- and anti-fibrotic agents, including S1P. This bioactive lipid exhibits both pro- and anti-fibrotic effects, depending on its site of action. In this review, after a brief description of sphingolipid metabolism and signaling, we emphasize the involvement of the S1P/S1PR axis and the downstream signaling pathways in the development of fibrosis. The current knowledge of the therapeutic potential of S1PR subtype modulators in the treatment of the cardiac functions and fibrinogenesis are also examined.
Collapse
Affiliation(s)
- Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of RomeRome, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| |
Collapse
|
5
|
Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca 2+ storage. Sci Rep 2017; 7:43575. [PMID: 28262793 PMCID: PMC5337937 DOI: 10.1038/srep43575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) lyase irreversibly cleaves S1P, thereby catalysing the ultimate step of sphingolipid degradation. We show here that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs), in which S1P and sphingosine accumulate, have features of Niemann-Pick disease type C (NPC) cells. In the presence of serum, overall cholesterol content was elevated in Sgpl1−/−-MEFs, due to upregulation of the LDL receptor and enhanced cholesterol uptake. Despite this, activation of sterol regulatory element-binding protein-2 was increased in Sgpl1−/−-MEFs, indicating a local lack of cholesterol at the ER. Indeed, free cholesterol was retained in NPC1-containing vesicles, which is a hallmark of NPC. Furthermore, upregulation of amyloid precursor protein in Sgpl1−/−-MEFs was mimicked by an NPC1 inhibitor in Sgpl1+/+-MEFs and reduced by overexpression of NPC1. Lysosomal pH was not altered by S1P lyase deficiency, similar to NPC. Interestingly, lysosomal Ca2+ content and bafilomycin A1-induced [Ca2+]i increases were enhanced in Sgpl1−/−-MEFs, contrary to NPC. These results show that both a primary defect in cholesterol trafficking and S1P lyase deficiency cause overlapping phenotypic alterations, and challenge the present view on the role of sphingosine in lysosomal Ca2+ homeostasis.
Collapse
|
6
|
Chew WS, Wang W, Herr DR. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacol Res 2016; 113:521-532. [DOI: 10.1016/j.phrs.2016.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
|
7
|
Blankenbach KV, Schwalm S, Pfeilschifter J, Meyer Zu Heringdorf D. Sphingosine-1-Phosphate Receptor-2 Antagonists: Therapeutic Potential and Potential Risks. Front Pharmacol 2016; 7:167. [PMID: 27445808 PMCID: PMC4914510 DOI: 10.3389/fphar.2016.00167] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
The sphingosine-1-phosphate (S1P) signaling system with its specific G-protein-coupled S1P receptors, the enzymes of S1P metabolism and the S1P transporters, offers a multitude of promising targets for drug development. Until today, drug development in this area has nearly exclusively focused on (functional) antagonists at the S1P1 receptor, which cause a unique phenotype of immunomodulation. Accordingly, the first-in class S1P1 receptor modulator, fingolimod, has been approved for the treatment of relapsing-remitting multiple sclerosis, and novel S1P1 receptor (functional) antagonists are being developed for autoimmune and inflammatory diseases such as psoriasis, inflammatory bowel disease, lupus erythematodes, or polymyositis. Besides the S1P1 receptor, also S1P2 and S1P3 are widely expressed and regulate many diverse functions throughout the body. The S1P2 receptor, in particular, often exerts cellular functions which are opposed to the functions of the S1P1 receptor. As a consequence, antagonists at the S1P2 receptor have the potential to be useful in a contrasting context and different areas of indication compared to S1P1 antagonists. The present review will focus on the therapeutic potential of S1P2 receptor antagonists and discuss their opportunities as well as their potential risks. Open questions and areas which require further investigations will be emphasized in particular.
Collapse
Affiliation(s)
- Kira V Blankenbach
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany
| |
Collapse
|
8
|
Schwiebs A, Friesen O, Katzy E, Ferreirós N, Pfeilschifter JM, Radeke HH. Activation-Induced Cell Death of Dendritic Cells Is Dependent on Sphingosine Kinase 1. Front Pharmacol 2016; 7:94. [PMID: 27148053 PMCID: PMC4832589 DOI: 10.3389/fphar.2016.00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/22/2016] [Indexed: 01/20/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is an immune modulatory lipid mediator and has been implicated in numerous pathophysiological processes. S1P is produced by sphingosine kinase 1 (Sphk1) and Sphk2. Dendritic cells (DCs) are central for the direction of immune responses and crucially involved in autoimmunity and cancerogenesis. In this study we examined the function and survival of bone marrow-derived DCs under long-term inflammatory stimulation. We observed that differentiated cells undergo activation-induced cell death (AICD) upon LPS stimulation with an increased metabolic activity shortly after stimulation, followed by a rapid activation of caspase 3 and subsequent augmented apoptosis. Importantly, we highlight a profound role of Sphk1 in secretion of inflammatory cytokines and survival of dendritic cells that might be mediated by a change in sphingolipid levels as well as by a change in STAT3 expression. Cell growth during differentiation of Sphk1-deficient cells treated with the functional S1P receptor antagonist FTYP was reduced. Importantly, in dendritic cells we did not observe a compensatory regulation of Sphk2 mRNA in Sphk1-deficient cells. Instead, we discovered a massive increase in Sphk1 mRNA concentration upon long-term stimulation with LPS in wild type cells that might function as an attempt to rescue from inflammation-caused cell death. Taken together, in this investigation we describe details of a crucial involvement of sphingolipids and Sphk1 in AICD during long-term immunogenic activity of DCs that might play an important role in autoimmunity and might explain the differences in immune response observed in in vivo studies of Sphk1 modulation.
Collapse
Affiliation(s)
- Anja Schwiebs
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Olga Friesen
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Elisabeth Katzy
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Nerea Ferreirós
- Department of Clinical Pharmacology, Pharmazentrum Frankfurt, Clinic of the Goethe University Frankfurt, Germany
| | - Josef M Pfeilschifter
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| | - Heinfried H Radeke
- Department of General Pharmacology and Toxicology, Pharmazentrum Frankfurt/ZAFES, Clinic of the Goethe University Frankfurt, Germany
| |
Collapse
|
9
|
Moruno Manchon JF, Uzor NE, Dabaghian Y, Furr-Stimming EE, Finkbeiner S, Tsvetkov AS. Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy. Sci Rep 2015; 5:15213. [PMID: 26477494 PMCID: PMC4609990 DOI: 10.1038/srep15213] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an important homeostatic mechanism that eliminates long-lived proteins, protein aggregates and damaged organelles. Its dysregulation is involved in many neurodegenerative disorders. Autophagy is therefore a promising target for blunting neurodegeneration. We searched for novel autophagic pathways in primary neurons and identified the cytosolic sphingosine-1-phosphate (S1P) pathway as a regulator of neuronal autophagy. S1P, a bioactive lipid generated by sphingosine kinase 1 (SK1) in the cytoplasm, is implicated in cell survival. We found that SK1 enhances flux through autophagy and that S1P-metabolizing enzymes decrease this flux. When autophagy is stimulated, SK1 relocalizes to endosomes/autophagosomes in neurons. Expression of a dominant-negative form of SK1 inhibits autophagosome synthesis. In a neuron model of Huntington’s disease, pharmacologically inhibiting S1P-lyase protected neurons from mutant huntingtin-induced neurotoxicity. These results identify the S1P pathway as a novel regulator of neuronal autophagy and provide a new target for developing therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Ndidi-Ese Uzor
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Yuri Dabaghian
- The Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030.,Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005
| | | | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease and the Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA 94158.,Departments of Neurology and Physiology, University of California, San Francisco, CA 94143
| | - Andrey S Tsvetkov
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030
| |
Collapse
|
10
|
Weiler S, Braendlin N, Beerli C, Bergsdorf C, Schubart A, Srinivas H, Oberhauser B, Billich A. Orally active 7-substituted (4-benzylphthalazin-1-yl)-2-methylpiperazin-1-yl]nicotinonitriles as active-site inhibitors of sphingosine 1-phosphate lyase for the treatment of multiple sclerosis. J Med Chem 2014; 57:5074-84. [PMID: 24809814 DOI: 10.1021/jm500338n] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingosine 1-phosphate (S1P) lyase has recently been implicated as a therapeutic target for the treatment of multiple sclerosis (MS), based on studies in a genetic mouse model. Potent active site directed inhibitors of the enzyme are not known so far. Here we describe the discovery of (4-benzylphthalazin-1-yl)-2-methylpiperazin-1-yl]nicotinonitrile 5 in a high-throughput screen using a biochemical assay, and its further optimization. This class of compounds was found to inhibit catalytic activity of S1PL by binding to the active site of the enzyme, as seen in the cocrystal structure of derivative 31 with the homodimeric human S1P lyase. 31 induces profound reduction of peripheral T cell numbers after oral dosage and confers pronounced protection in a rat model of multiple sclerosis. In conclusion, this novel class of direct S1P lyase inhibitors provides excellent tools to further explore the therapeutic potential of T cell-targeted therapies in multiple sclerosis and other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Sven Weiler
- Novartis Institutes for BioMedical Research , Basel, CH-4002, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that allow the transfer of signals across the cell membrane. In addition to their physiological role, GPCRs are involved in many pathophysiological processes including pathways relevant in rheumatoid arthritis (RA), osteoarthritis (OA) and psoriatic arthritis. Two-thirds of all currently available drugs target GPCRs directly or indirectly. However, the detailed mechanism of GPCR signalling is still unclear. Selective modification of GPCR-dependent signalling cascades to inhibit disease progression in rheumatic diseases is now being investigated. One approach is to use antibodies against ligands activating GPCRs. However, several GPCRs are known to be activated by only one ligand. In this case, targeting the receptor itself is a promising approach. So far, more information is available on GPCR action in RA as compared with OA, and even less information is available for other rheumatic diseases. Additional research on the role of GPCRs involved in the pathophysiology of rheumatic diseases is required to develop specific therapeutic approaches.
Collapse
|
12
|
Abstract
The inherited deficiency of the lysosomal glucocerebrosidase (GBA) due to mutations in the GBA gene results in Gaucher disease (GD). A vast majority of patients present with nonneuronopathic, type 1 GD (GD1). GBA deficiency causes the accumulation of two key sphingolipids, glucosylceramide (GL-1) and glucosylsphingosine (LysoGL-1), classically noted within the lysosomes of mononuclear phagocytes. How metabolites of GL-1 or LysoGL-1 produced by extralysosomal glucocerebrosidase GBA2 contribute to the GD1 pathophysiology is not known. We recently recapitulated hepatosplenomegaly, cytopenia, hypercytokinemia, and the bone-formation defect of human GD1 through conditional deletion of Gba in Mx1-Cre(+):GD1 mice. Here we show that the deletion of Gba2 significantly rescues the GD1 clinical phenotype, despite enhanced elevations in GL-1 and LysoGL-1. Most notably, the reduced bone volume and bone formation rate are normalized. These results suggest that metabolism of GL-1 or LysoGL-1 into downstream bioactive lipids is a major contributor to the bone-formation defect. Direct testing revealed a strong inhibition of osteoblast viability by nanomolar concentrations of sphingosine, but not of ceramide. These findings are consistent with toxicity of high circulating sphingosine levels in GD1 patients, which decline upon enzyme-replacement therapy; serum ceramide levels remain unchanged. Together, complementary results from mice and humans affected with GD1 not only pinpoint sphingosine as being an osteoblast toxin, but also set forth Gba2 as a viable therapeutic target for the development of inhibitors to ameliorate certain disabling consequences of GD1.
Collapse
|
13
|
Plano D, Amin S, Sharma AK. Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. J Med Chem 2014; 57:5509-24. [PMID: 24471412 DOI: 10.1021/jm4011687] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sphingosine kinase (SphK) is an oncogenic lipid kinase that regulates the sphingolipid metabolic pathway that has been shown to play a role in numerous hyperproliferative/inflammatory diseases. The SphK isoforms (SphK1 and SphK2) catalyze the conversion of the proapoptotic substrate d-erythrosphingosine to the promitogenic/migratory product sphingosine 1-phosphate (S1P). Accumulation of S1P has been linked to the development/progression of cancer and various other diseases including, but not limited to, asthma, inflammatory bowel disease, rheumatoid arthritis, and diabetic nephropathy. SphK therefore represents a potential new target for developing novel therapeutics for cancer and other diseases. This finding has stimulated the development and evaluation of numerous SphK inhibitors over the past decade or so. In this review, we highlight the recent advancement in the field of SphK inhibitors including SphK1 and SphK2 specific inhibitors. Both sphingolipid based and nolipidic small molecule inhibitors and their importance in treatment of cancer and other diseases are discussed.
Collapse
Affiliation(s)
- Daniel Plano
- Department of Pharmacology, Penn State Hershey Cancer Institute, CH72, Penn State College of Medicine , 500 University Drive, Hershey, Pennsylvania 17033, United States
| | | | | |
Collapse
|
14
|
Rey M, Hess P, Clozel M, Delahaye S, Gatfield J, Nayler O, Steiner B. Desensitization by progressive up-titration prevents first-dose effects on the heart: guinea pig study with ponesimod, a selective S1P1 receptor modulator. PLoS One 2013; 8:e74285. [PMID: 24069292 PMCID: PMC3771878 DOI: 10.1371/journal.pone.0074285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/30/2013] [Indexed: 11/30/2022] Open
Abstract
Ponesimod, a selective S1P1 receptor modulator, reduces the blood lymphocyte count in all tested species by preventing egress of T and B cells from thymus and peripheral lymphoid organs. In addition, ponesimod transiently affects heart rate and atrioventricular (AV) conduction in humans, effects not observed in mice, rats, and dogs with selective S1P1 receptor modulators, suggesting that the regulation of heart rate and rhythm is species dependent. In the present study, we used conscious guinea pigs implanted with a telemetry device to investigate the effects of single and multiple oral doses of ponesimod on ECG variables, heart rate, and blood pressure. Oral administration of ponesimod did not affect the sinus rate (P rate) but dose-dependently induced AV block type I to III. A single oral dose of 0.1 mg/kg had no effect on ECG variables, while a dose of 3 mg/kg induced AV block type III in all treated guinea pigs. Repeated oral dosing of 1 or 3 mg/kg ponesimod resulted in rapid desensitization, so that the second dose had no or a clearly reduced effect on ECG variables as compared with the first dose. Resensitization of the S1P1 receptor in the heart was concentration dependent. After desensitization had been induced by the first dose of ponesimod, the cardiac system remained desensitized as long as the plasma concentration was ≥75 ng/ml. By using a progressive up-titration regimen, the first-dose effect of ponesimod on heart rate and AV conduction was significantly reduced due to desensitization of the S1P1 receptor. In summary, conscious guinea pigs implanted with a telemetry device represent a useful model to study first-dose effects of S1P1 receptor modulators on heart rate and rhythm. This knowledge was translated to a dosing regimen of ponesimod to be tested in humans to avoid or significantly reduce the first-dose effects.
Collapse
Affiliation(s)
- Markus Rey
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Patrick Hess
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | - John Gatfield
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
- * E-mail:
| | - Oliver Nayler
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Beat Steiner
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|