1
|
Huang X, Chen L, Liu L, Chen H, Gong Z, Lyu J, Li Y, Jiang Q, Zeng X, Zhang P, Zhou H. Untargeted metabolomics analysis reveals the potential mechanism of imatinib-induced skin rash in patients with gastrointestinal stromal tumor. Int Immunopharmacol 2024; 140:112728. [PMID: 39098227 DOI: 10.1016/j.intimp.2024.112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Imatinib-induced skin rash poses a significant challenge for patients with gastrointestinal stromal tumor, often resulting in treatment interruption or discontinuation and subsequent treatment failure. However, the underlying mechanism of imatinib-induced skin rashes in gastrointestinal stromal tumor patients remains unclear. A total of 51 patients (27 with rash and 24 without rash) were enrolled in our study. Blood samples were collected concomitantly with the onset of clinical manifestations of rashes, and simultaneously collecting clinical relevant information. The imatinib concentration and untargeted metabolomics were performed by ultra-high-performance liquid chromatography-tandem mass spectrometry. There were no significant differences in age, gender, imatinib concentration and white blood cells count between the rash group and the control group. However, the rash group exhibited a higher eosinophil count (P<0.05) and lower lymphocyte count (P<0.05) compared to the control group. Untargeted metabolomics analysis found that 105 metabolites were significantly differentially abundant. The univariate analysis highlighted erucamide, linoleoylcarnitine, and valine betaine as potential predictive markers (AUC≥0.80). Further enriched pathway analysis revealed primary metabolic pathways, including sphingolipid signaling pathway, sphingolipid metabolism, cysteine and methionine metabolism, biosynthesis of unsaturated fatty acids, arginine and proline metabolism, and biosynthesis of amino acids. These findings suggest that the selected differential metabolites could serve as a foundation for the prediction and management of imatinib-induced skin rash in gastrointestinal stromal tumor patients.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Linhua Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Li Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Hefen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhujun Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Lyu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yao Li
- Department of Gastrointestinal Surgery, Department of Nursing, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
2
|
Zhang J, Wu F, Wang J, Qin Y, Pan Y. Unveiling the Metabolomic Profile of Oily Sensitive Skin: A Non-Invasive Approach. Int J Mol Sci 2024; 25:11033. [PMID: 39456816 PMCID: PMC11507585 DOI: 10.3390/ijms252011033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Skin barrier impairment is becoming increasingly common due to changes in lifestyle and modern living environments. Oily sensitive skin (OSS) is a condition that is characterized by an impaired skin barrier. Thus, examining the differences between OSS and healthy skin will enable a more objective evaluation of the characteristics of OSS and facilitate investigations of potential treatments. Initially, a self-assessment questionnaire was used to identify patients with OSS. Biophysical measurements and LAST scores were used to determine whether skin barrier function was impaired. Epidermal biophysical properties, including skin hydration, transepidermal water loss (TEWL), sebum content, erythema index (EI), and a* value, were measured with noninvasive instruments. We subsequently devised a noninvasive D-square sampling technique to identify changes in the skin metabolome in conjunction with an untargeted metabolomics analysis with an Orbitrap Q ExactiveTM series mass spectrometer. In the stratum corneum of 47 subjects, 516 skin metabolites were identified. In subjects with OSS, there was an increase in the abundance of 15 metabolites and a decrease in the abundance of 48 metabolites. The participants with OSS were found to have the greatest disruptions in sphingolipid and amino acid metabolism. The results revealed that an impaired skin barrier is present in patients with OSS and offers a molecular target for screening for skin barrier damage.
Collapse
Affiliation(s)
| | | | | | | | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (F.W.); (J.W.); (Y.Q.)
| |
Collapse
|
3
|
Zhang R, Hou Z, Liao K, Yu C, Jing R, Tu C. Expression Profile and Bioinformatics Analysis of Circular RNAs in Patients with Vitiligo. Pharmgenomics Pers Med 2022; 15:785-796. [PMID: 36092681 PMCID: PMC9451056 DOI: 10.2147/pgpm.s371107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Rongxin Zhang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, People’s Republic of China
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Zhao Hou
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Kexin Liao
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Chao Yu
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Rongrong Jing
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, People’s Republic of China
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
| | - Caixia Tu
- Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, People’s Republic of China
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, 116027, People’s Republic of China
- Correspondence: Caixia Tu, Department of Dermatology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116027, People’s Republic of China, Tel +8617709872288, Fax +86 411 84672130, Email
| |
Collapse
|
4
|
Yoon SB, Lee CH, Kim HY, Jeong D, Jeon MK, Cho SA, Kim K, Lee T, Yang JY, Gong YD, Cho H. A novel sphingosylphosphorylcholine and sphingosine-1-phosphate receptor 1 antagonist, KRO-105714, for alleviating atopic dermatitis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:20. [PMID: 32514255 PMCID: PMC7257206 DOI: 10.1186/s12950-020-00244-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 03/26/2020] [Indexed: 11/17/2022]
Abstract
Background Atopic dermatitis (eczema) is a type of inflammation of the skin, which presents with itchy, red, swollen, and cracked skin. The high global incidence of atopic dermatitis makes it one of the major skin diseases threatening public health. Sphingosylphosphorylcholine (SPC) and sphingosine-1-phosphate (S1P) act as pro-inflammatory mediators, as an angiogenesis factor and a mitogen in skin fibroblasts, respectively, both of which are important biological responses to atopic dermatitis. The SPC level is known to be elevated in atopic dermatitis, resulting from abnormal expression of sphingomyelin (SM) deacylase, accompanied by a deficiency in ceramide. Also, S1P and its receptor, sphingosine-1-phosphate receptor 1 (S1P1) are important targets in treating atopic dermatitis. Results In this study, we found a novel antagonist of SPC and S1P1, KRO-105714, by screening 10,000 compounds. To screen the compounds, we used an SPC-induced cell proliferation assay based on a high-throughput screening (HTS) system and a human S1P1 protein-based [35S]-GTPγS binding assay. In addition, we confirmed the inhibitory effects of KRO-105714 on atopic dermatitis through related cell-based assays, including a tube formation assay, a cell migration assay, and an ELISA assay on inflammatory cytokines. Finally, we confirmed that KRO-105714 alleviates atopic dermatitis symptoms in a series of mouse models. Conclusions Taken together, our data suggest that SPC and S1P1 antagonist KRO-105714 has the potential to alleviate atopic dermatitis.
Collapse
Affiliation(s)
- Sae-Bom Yoon
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Chang Hoon Lee
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Hyun Young Kim
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Daeyoung Jeong
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Moon Kook Jeon
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Sun-A Cho
- Department of Laboratory Animal Medicine, Research Institute for Veterinary Science, BK21PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Kwangmi Kim
- College of Pharmacy, Danguk University, 119 Dandae-ro, Cheonan, Chungnam, 31116 Republic of Korea
| | - Taeho Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 702-701 South Korea
| | - Jung Yoon Yang
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea
| | - Young-Dae Gong
- Innovative Drug Library Research Center, Science College, Dongguk University, Seoul, 100-715 Republic of Korea
| | - Heeyeong Cho
- Drug Discovery Platform Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon, 34114 Republic of Korea.,Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
6
|
Serum sphingolipid level in psoriatic patients with obesity. Postepy Dermatol Alergol 2019; 36:714-721. [PMID: 31998000 PMCID: PMC6986291 DOI: 10.5114/ada.2019.91422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction Psoriasis is a chronic inflammatory disease associated with metabolic syndrome, including obesity. Ceramides (CER) and sphingosine-1-phosphate (S1P), which belongs to sphingolipids, have both biological and structural functions in the human epidermis. Aim To evaluate serum concentrations of selected CER in psoriatic patients in different weight ranges, the impact of obesity on the concentration of circulating CERs, their association with the course of psoriasis and selected inflammatory markers. Material and methods Eigthy-five patients with active plaque-type psoriasis and 32 healthy controls were enrolled in the study. Patients were divided into 3 groups: normal weight, overweight and obese. Serum concentrations of 14 ceramides were measured by gas-liquid chromatography. The results were correlated with the Psoriasis Area and Severity Index (PASI), serum lipid profile and inflammatory markers. Results There were no significant differences in total serum CER concentration between psoriatic groups of patients. The S1P concentration was higher in psoriatic patients with normal body weight and overweight than in the control group (p = 0.002 and p = 0.04, respectively). In psoriatic patients with normal body weight, nervonic ceramide (C24:1) correlated with PASI (r = 0.38; p = 0.042) and CRP (C-reactive protein) (r = 0.42; p = 0.023). In overweight patients, the concentration of lignoceric ceramide (C24:0) correlated inversely with the severity of the disease (r = -0.41; p = 0.022) and CRP (r = -0.6; p = 0.0004). Conclusions We have demonstrated an abnormal sphingolipid profile in psoriatic patients in different weight groups. Selected CER might be the biomarkers of psoriasis severity and inflammation, may reflect lipid disturbances and contribute to the development of metabolic syndrome.
Collapse
|
7
|
Souto EB, Dias-Ferreira J, Oliveira J, Sanchez-Lopez E, Lopez-Machado A, Espina M, Garcia ML, Souto SB, Martins-Gomes C, Silva AM. Trends in Atopic Dermatitis-From Standard Pharmacotherapy to Novel Drug Delivery Systems. Int J Mol Sci 2019; 20:ijms20225659. [PMID: 31726723 PMCID: PMC6888057 DOI: 10.3390/ijms20225659] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by robust burning and eczematous lacerations in diverse portions of the body. AD affects about 20% of both offspring and adults worldwide. The pathophysiology of AD combines environmental, hereditary, and immunological aspects, together with skin barrier dysfunction. The procedures used to prevent the disease are the everyday usage of creams to support the restoration of the epidermal barrier. The classical treatments include the use of topical corticosteroids as a first-line therapy, but also calcineurin inhibitors, antihistamines, antibiotics, phototherapy, and also immunosuppressant drugs in severe cases of AD. Topical drug delivery to deeper skin layers is a difficult task due to the skin anatomic barrier, which limits deeper penetration of drugs. Groundbreaking drug delivery systems, based on nanoparticles (NPs), have received much attention due to their ability to improve solubility, bioavailability, diffusion, targeting to specific types of cells, and limiting the secondary effects of the drugs employed in the treatment of AD. Even so, additional studies are still required to recognize the toxicological characteristics and long-term safety of NPs. This review discusses the current classical pharmacotherapy of AD against new nanoparticle skin delivery systems and their toxicologic risks.
Collapse
Affiliation(s)
- Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-239-488-400
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
| | - Jéssica Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
| | - Elena Sanchez-Lopez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Ana Lopez-Machado
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; (J.D.-F.); (J.O.); (E.S.-L.); (A.L.-M.)
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Maria L. Garcia
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Ave. Joan XXIII, 08028 Barcelona, Spain; (M.E.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona 08028, Spain
| | - Selma B. Souto
- Department of Endocrinology, Hospital de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Carlos Martins-Gomes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (A.M.S.)
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
8
|
Wijesinghe DS, Warncke UO, Diegelmann RF. Human as the Ultimate Wound Healing Model: Strategies for Studies Investigating the Dermal Lipidome. CURRENT DERMATOLOGY REPORTS 2016; 5:244-251. [PMID: 28503364 PMCID: PMC5423676 DOI: 10.1007/s13671-016-0156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Educate the reader of the multiple roles undertaken by the human epidermal lipidome and the experimental techniques of measuring them. RECENT FINDINGS Damage to skin elicits a wound healing process that is capped by the recreation of the lipid barrier. In addition to barrier function, lipids also undertake an active signaling role during wound healing. Achievement of these multiple functions necessitates a significant complexity and diversity in the lipidome resulting in a composition that is unique to the human skin. As such, any attempts to delineate the function of the lipidome during the wound healing process in humans need to be addressed via studies undertaken in humans. SUMMARY The human cutaneous lipidome is unique and play a functionally significant role in maintaining barrier and regulating wound healing. Modern mass spectrometry and Raman spectroscopy based methods enable the investigation epidermal lipidome with respect to those functions.
Collapse
Affiliation(s)
- Dayanjan S Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298
| | - Urszula Osinska Warncke
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research (CCTR), Virginia Commonwealth University Richmond, Virginia 23298
| | - Robert F Diegelmann
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| |
Collapse
|
9
|
Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. J Chromatogr A 2015; 1428:16-38. [PMID: 26275862 DOI: 10.1016/j.chroma.2015.07.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
Collapse
Affiliation(s)
- Núria Canela
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pol Herrero
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Sílvia Mariné
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pedro Nadal
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Maria Rosa Ras
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | | | - Lluís Arola
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain.
| |
Collapse
|