1
|
Bandopadhyay R, Mishra N, Rana R, Kaur G, Ghoneim MM, Alshehri S, Mustafa G, Ahmad J, Alhakamy NA, Mishra A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Front Pharmacol 2022; 13:805388. [PMID: 35462934 PMCID: PMC9021725 DOI: 10.3389/fphar.2022.805388] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nainshi Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ruhi Rana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gagandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa
- College of Pharmacy (Boys), Al-Dawadmi Campus, Shaqra University, Riyadh, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Nabil. A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Guwahati, India
| |
Collapse
|
2
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
3
|
Garcia-Pallero MÁ, Cardona D, Rueda-Ruzafa L, Rodriguez-Arrastia M, Roman P. Central nervous system stimulation therapies in phantom limb pain: a systematic review of clinical trials. Neural Regen Res 2022; 17:59-64. [PMID: 34100428 PMCID: PMC8451556 DOI: 10.4103/1673-5374.314288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phantom limb pain is a chronic pain syndrome that is difficult to cope with. Despite neurostimulation treatment is indicated for refractory neuropathic pain, there is scant evidence from randomized controlled trials to recommend it as the treatment choice. Thus, a systematic review was performed to analyze the efficacy of central nervous system stimulation therapies as a strategy for pain management in patients with phantom limb pain. A literature search for studies conducted between 1970 and September 2020 was carried out using the MEDLINE and Embase databases. Principles of The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline were followed. There were a total of 10 full-text articles retrieved and included in this review. Deep brain stimulation, repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and motor cortex stimulation were the treatment strategies used in the selected clinical trials. Repetitive transcranial magnetic stimulation and transcranial direct current stimulation were effective therapies to reduce pain perception, as well as to relieve anxiety and depression symptoms in phantom limb pain patients. Conversely, invasive approaches were considered the last treatment option as evidence in deep brain stimulation and motor cortex stimulation suggests that the value of phantom limb pain treatment remains controversial. However, the findings on use of these treatment strategies in other forms of neuropathic pain suggest that these invasive approaches could be a potential option for phantom limb pain patients.
Collapse
Affiliation(s)
| | - Diana Cardona
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Lola Rueda-Ruzafa
- Department of Functional Biology and Health Sciences, Faculty of Biology- CINBIO, University of Vigo, Vigo, Pontevedra, Spain
| | - Miguel Rodriguez-Arrastia
- Faculty of Health Sciences, Pre-Department of Nursing; Research Group CYS, Faculty of Health Sciences, Jaume I University, Castello de la Plana, Spain
| | - Pablo Roman
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Almería, Spain
| |
Collapse
|
4
|
Scuteri D, Mantovani E, Tamburin S, Sandrini G, Corasaniti MT, Bagetta G, Tonin P. Opioids in Post-stroke Pain: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:587050. [PMID: 33424596 PMCID: PMC7793939 DOI: 10.3389/fphar.2020.587050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/22/2020] [Indexed: 01/19/2023] Open
Abstract
Background: Post-stroke pain is one of the most common sequelae of stroke, which stands among the leading causes of death and adult-acquired disability worldwide. The role and clinical efficacy of opioids in post-stroke pain syndromes is still debated. Objectives: Due to the important gap in knowledge on the management of post-stroke pain, this systematic review aimed at assessing the efficacy of opioids in post-stroke pain syndromes. Methods: A literature search was conducted on databases relevant for medical scientific literature, i.e. PubMed/MEDLINE, Scopus, Web of Science and Cochrane Library databases from databases inception until August 31st, 2020 for clinical trials assessing the effects of opioids and opioid antagonists on pain reduction and pain related symptoms in patients with post-stroke pain syndromes. Studies assessing the effects of other medications (e.g., tricyclic antidepressant, pregabalin) or non - pharmacological management strategies (e.g., neurostimulation techniques) were excluded. The selected studies have been subjected to examination of the risk of bias. Results: The literature search retrieved 83,435 results. After duplicates removal, 34,285 articles were title and abstract screened. 25 full texts were assessed and 8 articles were identified to be eligible for inclusion in the qualitative summary and narrative analysis, of which three were placebo-controlled and two were dose-response. Among placebo-controlled studies, two evaluated the analgesic effect of morphine and one assessed the effects of the opioid antagonist naloxone on patients with central post-stroke pain. With regard to dose-response studies, both were on patients with central post-stroke pain, one assessing the efficacy of levorphanol, and the other on naloxone. Seven out of eight included studies showed an overall slight analgesic effect of opioids, with less consistent effects on other pain-related symptoms (e.g., mood, quality of life). The randomized controlled trials were subjected to meta-analysis and rating of the quality of evidence for the two outcomes considered according to GRADE (Grading of Recommendations, Assessment, Development and Evaluations) system. The overall results are inconclusive because of the small number of studies and of patients. Conclusions: The limited number of the included studies and their heterogeneity in terms of study design do not support the efficacy of opioids in post-stroke pain and in pain-related outcomes. Large double-blind randomized clinical trials with objective assessment of pain and related symptoms are needed to further investigate this topic.
Collapse
Affiliation(s)
- Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giorgio Sandrini
- Department of Brain and Behavioral Sciences, University of Pavia, IRCCS C. Mondino Foundation Neurologic Institute, Pavia, Italy
| | - Maria Tiziana Corasaniti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.,School of Hospital Pharmacy, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| |
Collapse
|
5
|
Liampas A, Velidakis N, Georgiou T, Vadalouca A, Varrassi G, Hadjigeorgiou GM, Tsivgoulis G, Zis P. Prevalence and Management Challenges in Central Post-Stroke Neuropathic Pain: A Systematic Review and Meta-analysis. Adv Ther 2020; 37:3278-3291. [PMID: 32451951 PMCID: PMC7467424 DOI: 10.1007/s12325-020-01388-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 01/30/2023]
Abstract
Introduction Central post-stroke pain (CPSP) is defined as the neuropathic pain that arises either acutely or in the chronic phase of a cerebrovascular event and is a result of central lesions of the somatosensory tract. The aim of this systematic review and meta-analysis was to establish the prevalence of CPSP, to describe its characteristics, and to discuss the associated management challenges. Methods After a systematic Medline search, we identified 69 papers eligible to be included. Results The pooled prevalence of CPSP in patients with stroke at any location was 11% (95% CI 7–18%), which can increase to more than 50% in the subgroups of patients with medullary or thalamic strokes. CPSP onset coincides with stroke occurrence in 26% of patients (95% CI 18–35%); CPSP manifests within a month since symptom onset in 31% of patients (95% CI 22–42%), and occurs between the first month and the first year in 41% of patients (95% CI 33.9–49.0%). CPSP develops more than 12 months after stroke onset in 5% of patients (95% CI 3–8%). Conclusions Clinicians should look for any evidence of central neuropathic pain for at least 12 months after stroke. Both pharmacological and non-pharmacological interventions can be used for the management of CPSP. Lamotrigine has the strongest evidence (Level II of evidence, derived from small randomized controlled trials) for being effective in the management of CPSP. Future research should focus on well-designed trials of pharmacological and non-pharmacological interventions aiming to relief CPSP, which is a very common but often neglected pain syndrome. Electronic supplementary material The online version of this article (10.1007/s12325-020-01388-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Liampas
- Academic Directorate of Neurosciences, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | | | - Athina Vadalouca
- Pain and Palliative Care Center, Athens Medical Center, Athens, Greece
| | | | | | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
6
|
Motor cortex stimulation in chronic neuropathic orofacial pain syndromes: a systematic review and meta-analysis. Sci Rep 2020; 10:7195. [PMID: 32346080 PMCID: PMC7189245 DOI: 10.1038/s41598-020-64177-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/10/2020] [Indexed: 01/21/2023] Open
Abstract
Invasive motor Cortex Stimulation (iMCS) was introduced in the 1990's for the treatment of chronic neuropathic orofacial pain (CNOP), although its effectiveness remains doubtful. However, CNOP is known to be a heterogeneous group of orofacial pain disorders, which can lead to different responses to iMCS. Therefore, this paper investigated (1) whether the effectiveness of iMCS is significantly different among different CNOP disorders and (2) whether other confounding factors can be impacting iMCS results in CNOP. A systematic review and meta-analysis using a linear mixed-model was performed. Twenty-three papers were included, totaling 140 CNOP patients. Heterogeneity of the studies showed to be 55.8%. A visual analogue scale (VAS) measured median pain relief of 66.5% (ranging from 0-100%) was found. Linear mixed-model analysis showed that patients suffering from trigeminal neuralgia responded significantly more favorable to iMCS than patients suffering from dysfunctional pain syndromes (p = 0.030). Also, patients suffering from CNOP caused by (supra)nuclear lesions responded marginally significantly better to iMCS than patients suffering from CNOP due to trigeminal nerve lesions (p = 0.049). No other confounding factors were elucidated. This meta-analysis showed that patients suffering from trigeminal neuralgia and patients suffering from (supra)nuclear lesions causing CNOP responded significantly more favorable than others on iMCS. No other confounding factors were found relevant.
Collapse
|
7
|
Liu S, Li C, Xing Y, Wang Y, Tao F. Role of Neuromodulation and Optogenetic Manipulation in Pain Treatment. Curr Neuropharmacol 2017; 14:654-61. [PMID: 26935535 PMCID: PMC4981737 DOI: 10.2174/1570159x14666160303110503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/30/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
Neuromodulation, including invasive and non-invasive stimulation, has been used to treat intractable chronic pain. However, the mechanisms by which neuromodulation produces antinociceptive effect still remain uncertain. Optogenetic manipulation, a recently developed novel approach, has already proven its value to clinicians by providing new insights into mechanisms of current clinical neuromodulation methods as well as pathophysiology of nervous system diseases at the circuit level. Here, we discuss the principles of two neuromodulation methods (deep brain stimulation and motor cortex stimulation) and their applications in pain treatment. More important, we summarize the new information from recent studies regarding optogenetic manipulation in neuroscience research and its potential utility in pain study.
Collapse
Affiliation(s)
| | | | | | | | - Feng Tao
- Department of Biomedical Sciences at Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, Texas.
| |
Collapse
|
8
|
DosSantos MF, Ferreira N, Toback RL, Carvalho AC, DaSilva AF. Potential Mechanisms Supporting the Value of Motor Cortex Stimulation to Treat Chronic Pain Syndromes. Front Neurosci 2016; 10:18. [PMID: 26903788 PMCID: PMC4749700 DOI: 10.3389/fnins.2016.00018] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary MCS to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g., glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of MCS to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS and TMS), which are analyzed comparatively.
Collapse
Affiliation(s)
| | - Natália Ferreira
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rebecca L. Toback
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Antônio C. Carvalho
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|
9
|
Isagulyan ED, Tomsky AA, Dekopov AV, Salova EM, Troshina EM, Dorokhov EV, Shabalov VA. Results of motor cortex stimulation in the treatment of chronic pain syndromes. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2015; 79:46-60. [PMID: 26977794 DOI: 10.17116/neiro201579646-60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AIM The article is aimed to demonstrate our experience in motor cortex stimulation (MCS) in patients with chronic neuropathic pain syndromes, assess the clinical efficacy of the technique in short-term and long-term follow-up, and analyze potential predictors of the MCS efficacy. MATERIAL AND METHODS Twenty patients were implanted with MCS electrodes at the Burdenko Neurosurgical Institute in the period between 2004 and 2014. The mean age of patients was 52 years (26 to 74 years). The patients suffered from neuropathic pain syndromes of different genesis (post-stroke, multiple sclerosis, atypical facial pain, phantom limb pain, brachial plexus injury, spinal cord injury, complex regional pain syndrome I). All patients underwent neurological examination with verification of neuropathic pain (DN4, Pain Detect, LANSS). The pain intensity and its effect on quality of life were assessed before operation and during follow-up according to 10-point visual-analog scales (modified Brief Pain Inventory). Before surgery, all patients underwent several repetitive transcranial magnetic stimulation (rTMS) sessions. After implantation of epidural electrodes, test MCS was performed. RESULTS Test stimulation was positive in 19 (95%) patients. All these patients were implanted with a chronic MCS system. The mean follow-up was 49.3 months (from 3 to 96 months). In short-term follow-up (fist 6 months), a positive result of MCS was observed in 17 patients, and a reduction in the pain intensity ranged from 37.5% to 90%. In long-term follow up (from 12 to 96 months), 14 patients had positive MCS RESULTS: and a reduction in the pain intensity amounted to 25% to 60%. All patients with positive MCS results received significantly decreased doses of opioids and tramadol. Two patients developed infectious complications, but there was no neurological deficit. Analysis of the factors affecting the efficacy of motor cortex stimulation did not reveal a statistically significant effect of rTMS and the presence and intensity of motor deficit. CONCLUSION Chronic epidural MCS is an effective and safety method for the treatment of some chronic neurogenic medically-refractory pain syndromes. Further research is necessary to specify the patient selection criteria and the MCS efficacy predictors.
Collapse
Affiliation(s)
| | - A A Tomsky
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A V Dekopov
- Burdenko Neurosurgical Institute, Moscow, Russia, Sechenov First Moscow State Medical University, Moscow, Russia
| | - E M Salova
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - E M Troshina
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - E V Dorokhov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - V A Shabalov
- Burdenko Neurosurgical Institute, Moscow, Russia, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
10
|
Saitoh Y. Validation and the future of stimulation therapy of the primary motor cortex. Neurol Med Chir (Tokyo) 2013; 52:451-6. [PMID: 22850491 DOI: 10.2176/nmc.52.451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The use of electrical motor cortex stimulation (EMCS) for post-stroke pain was established in Japan and has spread globally. EMCS has been used for the treatment of neuropathic pain, Parkinson's syndrome, and recovery of motor paresis. Since 2000, repetitive transcranial magnetic stimulation (rTMS) has been developed for the treatment of various neurological disorders. rTMS is a non-invasive method with almost no adverse effects. In the USA, rTMS of the left dorsolateral prefrontal cortex was approved for the treatment of major depression in 2008. rTMS of the primary motor cortex (M1) has been studied worldwide for the treatment of neuropathic pain, Parkinson's disease, motor paresis after stroke, and other neurological problems. New methods and devices for rTMS therapy are under development, and rTMS of the M1 is likely to be established as an effective therapy for some neurological disorders. The present review discusses EMCS and rTMS of the M1 concisely.
Collapse
Affiliation(s)
- Youichi Saitoh
- Department of Neuromodulation and Neurosurgery Office for University-Industry Collaboration, Osaka University, Osaka, Japan.
| |
Collapse
|
11
|
Monsalve GA. Motor cortex stimulation for facial chronic neuropathic pain: A review of the literature. Surg Neurol Int 2012; 3:S290-311. [PMID: 23230534 PMCID: PMC3514920 DOI: 10.4103/2152-7806.103023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/11/2012] [Indexed: 11/05/2022] Open
Abstract
Background: Facial chronic neuropathic pain (FCNP) is a disabling clinical entity, its incidence is increasing within the chronic pain population. There is indication for neuromodulation when conservative treatment fails. Motor cortex stimulation (MCS) has emerged as an alternative in the advanced management of these patients. The aim of this work is to review the worldwide literature on MCS for FCNP. Methods: A PubMed search from 1990 to 2012 was conducted using established MeSH words. A total of 126 relevant articles on MCS focused on chronic pain were selected and analysed. Series of cases were divided in (1) series focused on MCS for FCNP, and (2) MCS series of FCNP mixed with other chronic pain entities. Results: A total of 118 patients have been trialed for MCS for FCNP, 100 (84.7%) pursued permanent implantation of the system, and 84% of them had good pain control at the end of the study. Male: female ratio was about 1:2 in the whole group of studies; mean age was 58 years (range, 28–83), and mean pain duration was 7 years (range, 0.6–25). Four randomized controlled studies have been reported, all of them not focused on MCS for FCNP. The most common complication was seizure followed by wound infection. Preoperative evaluation, surgical techniques, and final settings varied among the series. Conclusion: MCS for FNCP is a safe and efficacious treatment option when previous managements have failed; however, there is still lack of strong evidence (larger randomized controlled multicentre studies) that MCS can be offered in a regular basis to FNCP patients.
Collapse
|
12
|
Abstract
PURPOSE The purpose of this review was to present an analysis of the literature of the outcome studies reported in patients following traumatic upper-extremity (UE) nerve injuries (excluding amputation), to assess the presence of an association between neuropathic pain and outcome in patients following traumatic UE nerve injuries, and to provide recommendations for inclusion of more comprehensive outcome measures by clinicians who treat these patients. SUMMARY OF KEY POINTS A Medline and CINAHL literature search retrieved 48 articles. This review identified very few studies of patients with peripheral nerve injury that reported neuropathic pain. When pain was reported, visual analogue or numeric rating scales were most frequently used; standardized questionnaires measuring pain or psychosocial function were rarely administered. Recent evidence shows substantial long-term disability and pain in patients following peripheral nerve injury. RECOMMENDATION To better understand neuropathic pain in patients following peripheral nerve injury, future outcome studies should include valid, reliable measures of physical impairment, pain, disability, health-related quality of life, and psychosocial functioning.
Collapse
Affiliation(s)
- Christine B Novak
- Christine B. Novak, BScPT, MSc, PhD(c): Institute of Medical Sciences, University of Toronto, Toronto, Ontario
| | | |
Collapse
|
13
|
Abstract
Since initial reports in the early 1990s, stimulation of the M1 region of the cortex (MCS) has been used to treat chronic refractory pain conditions and a variety of movement disorders. A Medline search of literature between 1991 and 2007 revealed 512 cases using MCS. Although most of these relate to the treatment of pain (422), 84 of them involve movement disorders. More recently, several studies have specifically looked at treating Parkinson's disease (PD) with MCS. We report here several of our own cases using MCS to treat poststroke and non-poststroke pain syndromes and movement disorders (n = 8), PD (n = 4), ET (n = 2), and cortico-basal degeneration (n = 1). We also cover the essential history of this procedure and our current research using computational modeling to understand further the underlying mechanisms of MCS.
Collapse
Affiliation(s)
- Jeffrey E Arle
- Department of Neurosurgery, Lahey Clinic, Burlington, Massachusetts 01805, USA.
| | | |
Collapse
|