1
|
Mohd G, Bhat IM, Kakroo I, Balachandran A, Tabasum R, Majid K, Wani MF, Manna U, Ghodake G, Lone S. Azolla Pinnata: Sustainable Floating Oil Cleaner of Water Bodies. ACS OMEGA 2024; 9:12725-12733. [PMID: 38524463 PMCID: PMC10955581 DOI: 10.1021/acsomega.3c08417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/26/2024]
Abstract
Various plant-based materials effectively absorb oil contaminants at the water/air interface. These materials showcase unparalleled efficiency in purging oil contaminants, encompassing rivers, lakes, and boundless oceans, positioning them as integral components of environmental restoration endeavors. In addition, they are biodegradable, readily available, and eco-friendly, thus making them a preferable choice over traditional oil cleaning materials. This study explores the phenomenal properties of the floating Azolla fern (Azolla pinnata), focusing on its unique hierarchical leaf surface design at both the microscale and nanoscale levels. These intricate structures endow the fern with exceptional characteristics, including superhydrophobicity, high water adhesion, and remarkable oil or organic solvent absorption capabilities. Azolla's leaf surface exhibits a rare combination of dual wettability, where hydrophilic spots on a superhydrophobic base enable the pinning of water droplets, even when positioned upside-down. This extraordinary property, known as the parahydrophobic state, is rare in floating plants, akin to the renowned Salvinia molesta, setting Azolla apart as a natural wonder. Submerged in water, Azolla leaves excel at absorbing light oils at the air-water interface, demonstrating a notable ability to extract high-density organic solvents. Moreover, Azolla's rapid growth, doubling in the area every 4-5 days, especially in flowing waters, positions it as a sustainable alternative to traditional synthetic oil-cleaning materials with long-term environmental repercussions. This scientific lead could pave the way for more environmentally friendly approaches to mitigate the negative impacts of oil spills and promote a cleaner water ecosystem.
Collapse
Affiliation(s)
- Ghulam Mohd
- Department
of Chemistry, National Institute of Technology
(NIT), Jammu
& Kashmir 190006, Srinagar, India
- iDREAM
(Interdisciplinary Division for Renewable Energy & Advanced Materials, Laboratory for Bioinspired Research on Advanced Interface
and Nanomaterials (BRAINS), NIT, Jammu & Kashmir 190006, Srinagar, India
| | - Irfan Majeed Bhat
- Department
of Chemistry, National Institute of Technology
(NIT), Jammu
& Kashmir 190006, Srinagar, India
- iDREAM
(Interdisciplinary Division for Renewable Energy & Advanced Materials, Laboratory for Bioinspired Research on Advanced Interface
and Nanomaterials (BRAINS), NIT, Jammu & Kashmir 190006, Srinagar, India
| | - Insha Kakroo
- Department
of Chemistry, National Institute of Technology
(NIT), Jammu
& Kashmir 190006, Srinagar, India
- iDREAM
(Interdisciplinary Division for Renewable Energy & Advanced Materials, Laboratory for Bioinspired Research on Advanced Interface
and Nanomaterials (BRAINS), NIT, Jammu & Kashmir 190006, Srinagar, India
| | - Akshay Balachandran
- Department
of Chemistry, National Institute of Technology
(NIT), Jammu
& Kashmir 190006, Srinagar, India
- iDREAM
(Interdisciplinary Division for Renewable Energy & Advanced Materials, Laboratory for Bioinspired Research on Advanced Interface
and Nanomaterials (BRAINS), NIT, Jammu & Kashmir 190006, Srinagar, India
| | - Ruheena Tabasum
- Department
of Chemistry, National Institute of Technology
(NIT), Jammu
& Kashmir 190006, Srinagar, India
- iDREAM
(Interdisciplinary Division for Renewable Energy & Advanced Materials, Laboratory for Bioinspired Research on Advanced Interface
and Nanomaterials (BRAINS), NIT, Jammu & Kashmir 190006, Srinagar, India
| | - Kowsar Majid
- Department
of Chemistry, National Institute of Technology
(NIT), Jammu
& Kashmir 190006, Srinagar, India
- iDREAM
(Interdisciplinary Division for Renewable Energy & Advanced Materials, Laboratory for Bioinspired Research on Advanced Interface
and Nanomaterials (BRAINS), NIT, Jammu & Kashmir 190006, Srinagar, India
| | - Mohammad Farooq Wani
- Department
of Mechanical Engineering, NIT Srinagar,
NIT, Jammu & Kashmir 190006, Srinagar, India
| | - Uttam Manna
- Department
of Chemistry, Indian Institute of Technology
(IIT), Kamrup, Guwahati 781039, Assam, India
| | - Gajanan Ghodake
- Department
of Biological Science and Environmental Science, College of Life Science
and Biotechnology, Dongguk University, Seoul, Ilsongdong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | - Saifullah Lone
- Department
of Chemistry, National Institute of Technology
(NIT), Jammu
& Kashmir 190006, Srinagar, India
- iDREAM
(Interdisciplinary Division for Renewable Energy & Advanced Materials, Laboratory for Bioinspired Research on Advanced Interface
and Nanomaterials (BRAINS), NIT, Jammu & Kashmir 190006, Srinagar, India
| |
Collapse
|
4
|
Takahashi H, Hirota K, Kawahara A, Hayakawa E, Inoue Y. Randomization of cortical microtubules in root epidermal cells induces root hair initiation in lettuce (Lactuca sativa L.) seedlings. PLANT & CELL PHYSIOLOGY 2003; 44:350-9. [PMID: 12668782 DOI: 10.1093/pcp/pcg043] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Root hair formation is induced when lettuce seedlings are transferred from liquid medium at pH 6.0 to fresh medium at pH 4.0. If seedlings are transferred to pH 6.0, no root hairs are formed. We investigated the role of microtubules in this low pH-induced root hair initiation in lettuce. At the hair-forming zone in root epidermal cells, microtubules were perpendicular to the longitudinal axis of the cell just after pre-culture. This arrangement became disordered as early as 5 min after transfer to pH 4.0, and became random by 30 min later. At pH 4.0, the randomization extended to the entire hair-forming zone of seedlings; at pH 6.0, however, randomization did not occur and transverse microtubules were maintained. When seedlings at pH 6.0 were treated with microtubule-depolymerizing drugs, root hairs were formed. In contrast, when a microtubule-stabilizing drug, taxol, was added to the medium, no root hairs formed, even at pH 4.0. These results suggest that the transverse cortical microtubules inhibit root hair formation, and that their destruction is necessary for initiation. Furthermore, the microfilament-disrupting drugs cytochalasin B and latrunculin B inhibited root hair initiation, suggesting that actin filaments are necessary for root hair initiation.
Collapse
Affiliation(s)
- Hidenori Takahashi
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba, 278-8510 Japan.
| | | | | | | | | |
Collapse
|
5
|
Sakaguchi S, Hogetsu T, Hara N. Arrangement of cortical microtubules in the shoot apex of Vinca major L. : Observations by immunofluorescence microscopy. PLANTA 1988; 175:403-411. [PMID: 24221878 DOI: 10.1007/bf00396347] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/1988] [Accepted: 04/04/1988] [Indexed: 06/02/2023]
Abstract
The arrangements of cortical microtubules (MTs) and of cellulose microfibrils in the median longitudinal cryosections of the vegetative shoot apex of Vinca major L., were examined by immunofluorescence microscopy and polarizing microscopy, respectively. The arrangement of MTs was different in the various regions of the apex: the MTs tended to be arranged anticlinally in tunica cells, randomly in corpus cells, and transversely in cells of the rib meristem. However, in the inner layers of the tunica in the flank region of the apex, cells with periclinal, oblique or random arrangements of MTs were also observed. In leaf primordia, MTs were arranged anticlinally in cells of the superficial layers and almost randomly in the inner cells. Polarizing microscopy of cell walls showed that the arrangement of cellulose microfibrils was anticlinal in tunica cells, random in corpus cells, and transverse in cells of the rib meristem; thus, the patterns of arrangement of microfibrils were the same as those of MTs in the respective regions. These results indicate that the different patterns of arrangement of MTs and microfibrils result in specific patterns of expansion in the three regions. These differences may be necessary to maintain the organization of the tissues in the shoot apex.
Collapse
Affiliation(s)
- S Sakaguchi
- Department of Biology, College of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, 153, Tokyo, Japan
| | | | | |
Collapse
|