1
|
Magid M, Wold JR, Moraga R, Cubrinovska I, Houston DM, Gartrell BD, Steeves TE. Leveraging an existing whole-genome resequencing population data set to characterize toll-like receptor gene diversity in a threatened bird. Mol Ecol Resour 2022; 22:2810-2825. [PMID: 35635119 PMCID: PMC9543821 DOI: 10.1111/1755-0998.13656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Species recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system. Previously, these genes have been analysed using species-specific primers and PCR. Here, we leverage an existing short-read reference genome, whole-genome resequencing population data set, and bioinformatic tools to characterize TLR gene diversity in captive and wild tchūriwat'/tūturuatu/shore plover (Thinornis novaeseelandiae), a threatened bird endemic to Aotearoa New Zealand. Our results show that TLR gene diversity in tchūriwat'/tūturuatu is low, and forms two distinct captive and wild genetic clusters. The bioinformatic approach presented here has broad applicability to other threatened species with existing genomic resources in Aotearoa New Zealand and beyond.
Collapse
Affiliation(s)
- Molly Magid
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Jana R. Wold
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Roger Moraga
- Tea Break Bioinformatics, LtdPalmerston NorthNew Zealand
| | - Ilina Cubrinovska
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Dave M. Houston
- Department of ConservationBiodiversity GroupAucklandNew Zealand
| | - Brett D. Gartrell
- Institute of Veterinary, Animal, and Biomedical SciencesWildbase, Massey UniversityPalmerston NorthNew Zealand
| | - Tammy E. Steeves
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
2
|
Seabirds Health and Conservation Medicine in Brazil. J Nat Conserv 2022. [DOI: 10.1016/j.jnc.2022.126238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Umar BN, Adamu J, Ahmad MT, Ahmad KH, Sada A, Orakpoghenor O. Fowlpox virus: an overview of its classification, morphology and genome, replication mechanisms, uses as vaccine vector and disease dynamics. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- B. N. Umar
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - J Adamu
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - M. T Ahmad
- Avian and Fish Health Unit, Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
| | - K. H. Ahmad
- Diagnostic Laboratory, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - A. Sada
- Virology and Immunology Unit, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
- Central Diagnostic Unit, National Veterinary Research Institute (NVRI), Vom, Nigeria
| | - O. Orakpoghenor
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
4
|
Molecular Detection of Reticuloendotheliosis Virus 5' Long Terminal Repeat Integration in the Genome of Avipoxvirus Field Strains from Different Avian Species in Egypt. BIOLOGY 2020; 9:biology9090257. [PMID: 32878059 PMCID: PMC7563266 DOI: 10.3390/biology9090257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/17/2022]
Abstract
Avipoxviruses (APVs) are among the most complex viruses that infect a wide range of birds’ species. The infection by APVs is often associated with breathing and swallowing difficulties, reduced growth, decreased egg production, and high mortalities in domestic poultry. In the present study, 200 cutaneous nodular samples were collected from different avian species (chicken, pigeon, turkey, and canary) suspected to be infected with APVs from Dakahlia Governorate, Egypt. Pooled samples (n = 40) were prepared and inoculated in embryonated chicken eggs (ECEs). APVs were then identified by polymerase chain reaction (PCR) and sequence analysis of the APV P4b gene. Furthermore, the forty strains of APVs were screened for the presence of reticuloendotheliosis virus (REV)-5′LTR in their genomes. Interestingly, the phylogenic tree of the APV P4b gene was separated into 2 clades: clade 1, in which our fowlpox virus (FWPV), turkeypox virus (TKPV), and canarypox virus (CNPV) isolates were grouped, along with reference FWPVs and TKPVs retrieved from GenBank, whereas, in clade2, the pigeonpox virus (PGPV) isolate was grouped with PGPVs retrieved from GenBank. Likewise, REV-5′LTR was amplified from 30 strains isolated from chicken, turkey, and canary, while PGPV strains were free from REV-5′LTR integration. To the best of our knowledge, this study involved the detection and characterization of REV-5′LTR insertions in the APVs field isolates in Egypt for the first time. Given the above information, further future research seems recommended to understand the impact of the resulting REV-5′LTR insertions on the pathogenesis, virulence, and inadequate vaccine protection against APVs.
Collapse
|
5
|
WHOLE GENOME SEQUENCING OF AN AVIPOXVIRUS ASSOCIATED WITH INFECTIONS IN A GROUP OF AVIARY-HOUSED SNOW BUNTINGS ( PLECTROPHENAX NIVALIS). J Zoo Wildl Med 2020; 50:803-812. [PMID: 31926510 DOI: 10.1638/2018-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 11/21/2022] Open
Abstract
Avipoxvirus infections have been reported in both free-ranging and domestic birds worldwide. Fowlpox and canarypox viruses belong to the genus Avipoxvirus among the virus family Poxviridae. They cause cutaneous lesions with proliferative growths on the unfeathered parts of the skin and/or diphtheritic lesions generally associated with necrosis in the upper respiratory and digestive tracts. In this study, a poxvirus has been identified in wild-caught snow buntings (Plectrophenax nivalis) housed in an outdoor aviary in the region of Rimouski, Quebec. During the falls and winters of 2015 and 2016, eight snow buntings affected by this infection were examined. Macroscopic and microscopic lesions observed were characteristic of an avipoxvirus infection. Electron microscopy imaging of an ultrathin section of the histopathological lesions of two birds confirmed the presence of the poxvirus. Afterward, the presence of the poxvirus was confirmed in three birds by a specific polymerase chain reaction assay that amplified a segment of the gene encoding the fowlpox virus 4b core protein. A 576-nucleotide amplicon was obtained from one of them and sequenced. The analyses revealed a 99% homology to other previously described avipoxviruses. Using high-throughput sequencing, almost the entire viral genome of this avipoxvirus was revealed and found to possess a 359,853-nucleotide sequence in length. Bioinformatic analyses revealed that the virus was genetically related to canarypox virus. To our knowledge, this is the first confirmed case and full description of a poxviral infection in this species. This episode suggests a high susceptibility of this northern species of passerine to avipoxviruses circulating in southeastern Canada during the summer months. Even if the source of the viral infections remains undetermined, transmission by local biological vectors is suspected. Management of poxviral infections in snow buntings housed outdoors in southeastern Canada could rely on the control of biting insects.
Collapse
|
6
|
AVIAN POXVIRUS INFECTION IN A FLAMINGO (PHOENICOPTERUS RUBER) OF THE LISBON ZOO. J Zoo Wildl Med 2016; 47:161-74. [PMID: 27010277 DOI: 10.1638/2011-0101.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Avian poxviruses (APV) are very large viruses spread worldwide in a variety of hosts. They are responsible for a disease usually referred to as pox, mainly characterized by nodular lesions on feather-free regions of the body. On May 2010, a young American flamingo (Phoenicopterus ruber) of the Lisbon Zoo (Portugal) developed a nodular lesion suggestive of poxvirus infection on its right foot. Avipoxvirus was isolated from the lesion and a fragment of the P4b-encoding gene was amplified by polymerase chain reaction. The nucleotide sequence of the amplicon was determined and analyzed. A close relationship (100% identity) was observed between the flamingo poxvirus and isolates from great bustard (Hungary 2005), house sparrow (Morocco 2009), MacQueen's bustard (Morocco 2011), and Houbara bustard (Morocco 2010 and 2011), suggesting interspecies transmission as a possible source of infection. To strengthen the investigation, the 5' and 3' ends of genes cnpv186 and cnpv 187, respectively, were also analyzed. The cnpv186-187 fragment exhibited 100% identity with MacQueen's bustard and Houbara bustard isolates, both from Morocco 2011. Phylogenetic analyses based in both fragments grouped the flamingo isolate consistently within clade B2 of canarypox. However, the phylogenetic relationships among the different representatives of avian poxviruses were more comprehensive in the tree based on the concatenated coding sequences of the cnpv186-187 fragment, rather than on the P4b-coding gene. The clearer displacement and distribution of the isolates regarding their host species in this last tree suggests the potential usefulness of this genomic region to refine avian poxvirus classification.
Collapse
|
7
|
Haller SL, Peng C, McFadden G, Rothenburg S. Poxviruses and the evolution of host range and virulence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 21:15-40. [PMID: 24161410 PMCID: PMC3945082 DOI: 10.1016/j.meegid.2013.10.014] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/22/2022]
Abstract
Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health.
Collapse
Affiliation(s)
- Sherry L Haller
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Chen Peng
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Rothenburg
- Laboratory for Host-Specific Virology, Division of Biology, Kansas State University, KS 66506, USA.
| |
Collapse
|
8
|
Offerman K, Carulei O, Gous TA, Douglass N, Williamson AL. Phylogenetic and histological variation in avipoxviruses isolated in South Africa. J Gen Virol 2013; 94:2338-2351. [PMID: 23860490 PMCID: PMC3785031 DOI: 10.1099/vir.0.054049-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Thirteen novel avipoxviruses were isolated from birds from different regions of South Africa. These viruses could be divided into six groups, according to gross pathology and pock appearance on chick chorioallantoic membranes (CAMs). Histopathology revealed distinct differences in epidermal and mesodermal cell proliferation, as well as immune cell infiltration, caused by the different avipoxviruses, even within groups of viruses causing similar CAM gross pathology. In order to determine the genetic relationships among the viruses, several conserved poxvirus genetic regions, corresponding to vaccinia virus (VACV) A3L (fpv167 locus, VACV P4b), G8R (fpv126 locus, VLTF-1), H3L (fpv140 locus, VACV H3L) and A11R–A12L (fpv175–176 locus) were analysed phylogenetically. The South African avipoxvirus isolates in this study all grouped in clade A, in either subclade A2 or A3 of the genus Avipoxvirus and differ from the commercial fowlpox vaccines (subclade A1) in use in the South African poultry industry. Analysis of different loci resulted in different branching patterns. There was no correlation between gross morphology, histopathology, pock morphology and phylogenetic grouping. There was also no correlation between geographical distribution and virus phenotype or genotype.
Collapse
Affiliation(s)
- Kristy Offerman
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Olivia Carulei
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Nicola Douglass
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
9
|
Sonnberg S, Fleming SB, Mercer AA. Phylogenetic analysis of the large family of poxvirus ankyrin-repeat proteins reveals orthologue groups within and across chordopoxvirus genera. J Gen Virol 2011; 92:2596-2607. [PMID: 21752962 DOI: 10.1099/vir.0.033654-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ankyrin-repeat (ANK) protein-interaction domains are common in cellular proteins but are relatively rare in viruses. Chordopoxviruses, however, encode a large number of ANK domain-containing ORFs of largely unknown function. Recently, a second protein-interaction domain, an F-box-like motif, was identified in several poxvirus ANK proteins. Cellular F-box proteins recruit substrates to the ubiquitination machinery of the cell, a putative function for ANK/poxviral F-box proteins. Using publicly available genome sequence data we examined all 328 predicted ANK proteins encoded by 27 chordopoxviruses that represented the eight vertebrate poxvirus genera whose members encode ANK proteins. Within these we identified 15 putative ANK protein orthologue groups within orthopoxviruses, five within parapoxviruses, 23 within avipoxviruses and seven across members of the genera Leporipoxvirus, Capripoxvirus, Yatapoxvirus, Suipoxvirus and Cervidpoxvirus. Sequence comparisons showed that members of each of these four clusters of orthologues were not closely related to members of any of the other clusters. Of these ORFs, 67% encoded a C-terminal poxviral F-box-like motif, whose absence could largely be attributed to fragmentation of ORFs. Our findings suggest that the large family of poxvirus ANK proteins arose by extensive gene duplication and divergence that occurred independently in four major genus-based groups after the groups diverged from each other. It seems likely that the ancestor ANK proteins of poxviruses contained both the N-terminal ANK repeats and a C-terminal F-box-like domain, with the latter domain subsequently being lost in a small subset of these proteins.
Collapse
Affiliation(s)
- Stephanie Sonnberg
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| |
Collapse
|
10
|
Weli SC, Tryland M. Avipoxviruses: infection biology and their use as vaccine vectors. Virol J 2011; 8:49. [PMID: 21291547 PMCID: PMC3042955 DOI: 10.1186/1743-422x-8-49] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/03/2011] [Indexed: 11/21/2022] Open
Abstract
Avipoxviruses (APVs) belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV) causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production) mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses) and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.
Collapse
Affiliation(s)
- Simon C Weli
- National Veterinary Institute, Ullevålsveien 68, N-0106 Oslo, Norway.
| | | |
Collapse
|