1
|
Banerjee S, Mukherjee B, Poddar MK, Dunbar GL. Carnosine improves aging-induced cognitive impairment and brain regional neurodegeneration in relation to the neuropathological alterations in the secondary structure of amyloid beta (Aβ). J Neurochem 2021; 158:710-723. [PMID: 33768569 DOI: 10.1111/jnc.15357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
Aging-induced proteinopathies, including deterioration of amyloid beta (Aβ) conformation, are associated with reductions in endogenous levels of carnosine and cognitive impairments. Carnosine is a well-known endogenous antioxidant, which counteracts aging-induced Aβ plaque formation. The aim of this study was to investigate the effects of exogenous carnosine treatments on aging-induced changes (a) in the steady-state level of endogenous carnosine and conformation of Aβ secondary structure in the different brain regions (cerebral cortex, hippocampus, hypothalamus, pons-medulla, and cerebellum) and (b) cognitive function. Young (4 months) and aged (18 and 24 months) male albino Wistar rats were treated with carnosine (2.0 μg kg-1 day-1 ; i.t.) or equivalent volumes of vehicle (saline) for 21 consecutive days and were tested for cognition using 8-arm radial maze test. Brains were processed to assess the conformational integrity of Aβ plaques using Raman spectroscopy and endogenous levels of carnosine were measured in the brain regions using HPLC. Results indicated that carnosine treatments improved the aging-induced deficits in cognitive function and reduced the β-sheets in the secondary structure of Aβ protein, as well as mitigating the reduction in the steady-state levels of carnosine and spine density in the brain regions examined. These results thus, suggest that carnosine can attenuate the aging-induced: (a) conformational changes in Aβ secondary structure by reducing the abundance of β-sheets and reductions in carnosine content in the brain regions and (b) cognitive impairment.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.,Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Gary L Dunbar
- Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
2
|
Li YY, Ghanbari R, Pathmasiri W, McRitchie S, Poustchi H, Shayanrad A, Roshandel G, Etemadi A, Pollock JD, Malekzadeh R, Sumner SCJ. Untargeted Metabolomics: Biochemical Perturbations in Golestan Cohort Study Opium Users Inform Intervention Strategies. Front Nutr 2020; 7:584585. [PMID: 33415121 PMCID: PMC7783045 DOI: 10.3389/fnut.2020.584585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: Over 50 million people worldwide are estimated to use opioids, of which ~30 million use opiates (opium and its derivatives). Use of opiates has been associated with a variety of adverse complications such as neurological and behavioral outcomes, addiction, cancers, diabetes, and cardiovascular disease. While it is well known that opiates exert their neurobiological effects through binding with mu, kappa, and delta receptors to exert analgesic and sedative effects, mechanistic links to other health effects are not well understood. Our study focuses on the identification of biochemical perturbations in Golestan Cohort Study (GCS) opium users. Methods: We used untargeted metabolomics to evaluate the metabolic profiles of 218 opium users and 80 non-users participating in the GCS. Urine samples were obtained from adult (age 40–75) opium users living in the Golestan Province of Iran. Untargeted analysis of urine was conducted using a UPLC-Q-Exactive HFx Mass Spectrometry and a 700 MHz NMR Spectrometry. Results: These GCS opium users had a significantly higher intake of tobacco and alcohol and a significantly decreased BMI compared with non-users. Metabolites derived from opium (codeine, morphine, and related glucuronides), nicotine, and curing or combustion of plant material were increased in opium users compared with non-users. Endogenous compounds which differentiated the opium users and non-users largely included vitamins and co-factors, metabolites involved in neurotransmission, Kreb's cycle, purine metabolism, central carbon metabolism, histone modification, and acetylation. Conclusions: Our study reveals biochemical perturbations in GCS opium users that are important to the development of intervention strategies to mitigate against the development of adverse effects of substance abuse.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Reza Ghanbari
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Wimal Pathmasiri
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susan McRitchie
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hossein Poustchi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Amaneh Shayanrad
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Arash Etemadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, United States
| | - Jonathan D Pollock
- Genetics, Epigenetics, and Developmental Neuroscience Branch, National Institute on Drug Abuse, Bethesda, MD, United States
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Susan C J Sumner
- Department of Nutrition, Nutrition Research Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Hasani P, Tehrani HS, Yaghmaei P, Roudbari NH. Effects of Camellia Sinensis Extract on Passive Avoidance Learning and Hippocampal Neurogenesis in Rats. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9642-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Mereu M, Bonci A, Newman AH, Tanda G. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology (Berl) 2013; 229:415-34. [PMID: 23934211 PMCID: PMC3800148 DOI: 10.1007/s00213-013-3232-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/28/2013] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES Modafinil (MOD) and its R-enantiomer (R-MOD) are approved medications for narcolepsy and other sleep disorders. They have also been used, off-label, as cognitive enhancers in populations of patients with mental disorders, including substance abusers that demonstrate impaired cognitive function. A debated nonmedical use of MOD in healthy individuals to improve intellectual performance is raising questions about its potential abuse liability in this population. RESULTS AND CONCLUSIONS MOD has low micromolar affinity for the dopamine transporter (DAT). Inhibition of dopamine (DA) reuptake via the DAT explains the enhancement of DA levels in several brain areas, an effect shared with psychostimulants like cocaine, methylphenidate, and the amphetamines. However, its neurochemical effects and anatomical pattern of brain area activation differ from typical psychostimulants and are consistent with its beneficial effects on cognitive performance processes such as attention, learning, and memory. At variance with typical psychostimulants, MOD shows very low, if any, abuse liability, in spite of its use as a cognitive enhancer by otherwise healthy individuals. Finally, recent clinical studies have focused on the potential use of MOD as a medication for treatment of drug abuse, but have not shown consistent outcomes. However, positive trends in several result measures suggest that medications that improve cognitive function, like MOD or R-MOD, may be beneficial for the treatment of substance use disorders in certain patient populations.
Collapse
Affiliation(s)
- Maddalena Mereu
- Molecular Targets & Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Antonello Bonci
- Synaptic Plasticity Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Amy Hauck Newman
- Molecular Targets & Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| | - Gianluigi Tanda
- Molecular Targets & Medication Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, DHHS; 251 Bayview Blvd., NIDA suite 200, Baltimore, MD, 21224
| |
Collapse
|
5
|
Rezvani AH, Cauley M, Xiao Y, Kellar KJ, Levin ED. Effects of chronic sazetidine-A, a selective α4β2 neuronal nicotinic acetylcholine receptors desensitizing agent on pharmacologically-induced impaired attention in rats. Psychopharmacology (Berl) 2013; 226:35-43. [PMID: 23100170 DOI: 10.1007/s00213-012-2895-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 09/11/2012] [Indexed: 11/28/2022]
Abstract
RATIONALE Nicotine and nicotinic agonists have been shown to improve attentional function. Nicotinic receptors are easily desensitized, and all nicotinic agonists are also desensitizing agents. Although both receptor activation and desensitization are components of the mechanism that mediates the overall effects of nicotinic agonists, it is not clear how each of the two opposed actions contributes to attentional improvements. Sazetidine-A has high binding affinity at α4β2 nicotinic receptors and causes a relatively brief activation followed by a long-lasting desensitization of the receptors. Acute administration of sazetidine-A has been shown to significantly improve attention by reversing impairments caused by the muscarinic cholinergic antagonist scopolamine and the NMDA glutamate antagonist dizocilpine. METHODS In the current study, we tested the effects of chronic subcutaneous infusion of sazetidine-A (0, 2, or 6 mg/kg/day) on attention in Sprague-Dawley rats. Furthermore, we investigated the effects of chronic sazetidine-A treatment on attentional impairment induced by an acute administration of 0.02 mg/kg scopolamine. RESULTS During the first week period, the 6-mg/kg/day sazetidine-A dose significantly reversed the attentional impairment induced by scopolamine. During weeks 3 and 4, the scopolamine-induced impairment was no longer seen, but sazetidine-A (6 mg/kg/day) significantly improved attentional performance on its own. Chronic sazetidine-A also reduced response latency and response omissions. CONCLUSIONS This study demonstrated that similar to its acute effects, chronic infusions of sazetidine-A improve attentional performance. The results indicate that the desensitization of α4β2 nicotinic receptors with some activation of these receptors may play an important role in improving effects of sazetidine-A on attention.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry, Duke University Medical Center, Box 104790, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
Recent research has identified specific molecular mechanisms that might account for impaired learning in particular intellectual disability syndromes. These and other findings raise the possibility that targeted drug treatments might be developed to enhance learning in subjects with intellectual disability. This review considers strategies for developing treatments, and identifies critical issues that will need to be considered in such programmes.
Collapse
Affiliation(s)
- Paul Glue
- Department of Psychological Medicine, Dunedin School of Medicine, University of Otago, PO Box 913, Dunedin, 9054, New Zealand
| | - Tess Patterson
- Department of Psychological Medicine, Dunedin School of Medicine, University of Otago, PO Box 913, Dunedin, 9054, New Zealand
| |
Collapse
|