1
|
Qin Y, Li M, Zhou SL, Yin W, Bian Z, Shu HB. SPI-2/CrmA inhibits IFN-β induction by targeting TBK1/IKKε. Sci Rep 2017; 7:10495. [PMID: 28874755 PMCID: PMC5585206 DOI: 10.1038/s41598-017-11016-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Viruses modulate the host immune system to evade host antiviral responses. The poxvirus proteins serine proteinase inhibitor 2 (SPI-2) and cytokine response modifier A (CrmA) are involved in multiple poxvirus evasion strategies. SPI-2 and CrmA target caspase-1 to prevent apoptosis and cytokine activation. Here, we identified SPI-2 and CrmA as negative regulators of virus-triggered induction of IFN-β. Ectopic expression of SPI-2 or CrmA inhibited virus-triggered induction of IFN-β and its downstream genes. Consistently, knockdown of SPI-2 by RNAi potentiated VACV-induced transcription of antiviral genes. Further studies revealed that SPI-2 and CrmA associated with TBK1 and IKKε to disrupt the MITA-TBK1/IKKε-IRF3 complex. These findings reveal a novel mechanism of SPI-2/CrmA-mediated poxvirus immune evasion.
Collapse
Affiliation(s)
- Yue Qin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Mi Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sheng-Long Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei Province and Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hong-Bing Shu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, Collaborative Innovation Center for Viral Immunology, School of Medicine, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Autio KPM, Ruotsalainen JJ, Anttila MO, Niittykoski M, Waris M, Hemminki A, Vähä-Koskela MJV, Hinkkanen AE. Attenuated Semliki Forest virus for cancer treatment in dogs: safety assessment in two laboratory Beagles. BMC Vet Res 2015. [PMID: 26215394 PMCID: PMC4515883 DOI: 10.1186/s12917-015-0498-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Dogs suffer from spontaneous tumors which may be amenable to therapies developed for human cancer patients, and dogs may serve as large-animal cancer models. A non-pathogenic Semliki Forest virus vector VA7-EGFP previously showed promise in targeting human tumor xenografts in mice, but the oncolytic capacity of the virus in canine cancer cells and the safety of the virus in higher mammals such as dogs, are not known. We therefore assessed the oncolytic potency of VA7-EGFP against canine cancer cells by infectivity and viability assays in two dog solid tumor cell lines. Furthermore we performed a 3-week safety study in two adult Beagles which received a single intravenous injection of ~2 × 105 plaque forming units of parental A7(74) strain. Results VA7-EGFP was able to replicate in and kill both canine cancer cell lines tested. No adverse events were observed in either of the two virus-injected adult Beagles and no infective virus could be recovered from any of the biological samples collected over the course of the study. Neutralizing antibodies to Semliki Forest virus became detectable in the dogs at 5 days post infection and remained elevated until study termination. Conclusions Based on these results, testing of the oncolytic potential of attenuated Semliki Forest virus in canine cancer patients appears feasible. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0498-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karoliina P M Autio
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014, Helsinki, Finland. .,Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
| | - Janne J Ruotsalainen
- A. I. Virtanen Institute for Molecular Sciences, Biotechnology and Molecular Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Marjukka O Anttila
- Finnish Food Safety Authority Evira, Pathology Unit, Mustialankatu 3, 00790, Helsinki, Finland.
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, Biotechnology and Molecular Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Matti Waris
- Department of Virology, University of Turku, 20014, Turku, Finland.
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory, Haartman Institute, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
| | | | - Ari E Hinkkanen
- A. I. Virtanen Institute for Molecular Sciences, Biotechnology and Molecular Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
3
|
Leão TL, da Fonseca FG. Subversion of cellular stress responses by poxviruses. World J Clin Infect Dis 2014; 4:27-40. [DOI: 10.5495/wjcid.v4.i4.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 07/26/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
Cellular stress responses are powerful mechanisms that prevent and cope with the accumulation of macromolecular damage in the cells and also boost host defenses against pathogens. Cells can initiate either protective or destructive stress responses depending, to a large extent, on the nature and duration of the stressing stimulus as well as the cell type. The productive replication of a virus within a given cell places inordinate stress on the metabolism machinery of the host and, to assure the continuity of its replication, many viruses have developed ways to modulate the cell stress responses. Poxviruses are among the viruses that have evolved a large number of strategies to manipulate host stress responses in order to control cell fate and enhance their replicative success. Remarkably, nearly every step of the stress responses that is mounted during infection can be targeted by virally encoded functions. The fine-tuned interactions between poxviruses and the host stress responses has aided virologists to understand specific aspects of viral replication; has helped cell biologists to evaluate the role of stress signaling in the uninfected cell; and has tipped immunologists on how these signals contribute to alert the cells against pathogen invasion and boost subsequent immune responses. This review discusses the diverse strategies that poxviruses use to subvert host cell stress responses.
Collapse
|