1
|
Committeri G, Bondi D, Sestieri C, Di Matteo G, Piervincenzi C, Doria C, Ruffini R, Baldassarre A, Pietrangelo T, Sepe R, Navarra R, Chiacchiaretta P, Ferretti A, Verratti V. Neuropsychological and Neuroimaging Correlates of High-Altitude Hypoxia Trekking During the "Gokyo Khumbu/Ama Dablam" Expedition. High Alt Med Biol 2022; 23:57-68. [PMID: 35104160 DOI: 10.1089/ham.2021.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Committeri Giorgia, Danilo Bondi, Carlo Sestieri, Ginevra Di Matteo, Claudia Piervincenzi, Christian Doria, Roberto Ruffini, Antonello Baldassarre, Tiziana Pietrangelo, Rosamaria Sepe, Riccardo Navarra, Piero Chiacchiaretta, Antonio Ferretti, and Vittore Verratti. Neuropsychological and neuroimaging correlates of high-altitude hypoxia trekking during the "Gokyo Khumbu/Ama Dablam" expedition. High Alt Med Biol 00:000-000, 2021. Background: Altitude hypoxia exposure may produce cognitive detrimental adaptations and damage to the brain. We aimed at investigating the effects of trekking and hypoxia on neuropsychological and neuroimaging measures. Methods: We recruited two balanced groups of healthy adults, trekkers (n = 12, 6 F and 6 M, trekking in altitude hypoxia) and controls (gender- and age-matched), who were tested before (baseline), during (5,000 m, after 9 days of trekking), and after the expedition for state anxiety, depression, verbal fluency, verbal short-term memory, and working memory. Personality and trait anxiety were also assessed at a baseline level. Neuroimaging measures of cerebral perfusion (arterial spin labeling), white-matter microstructural integrity (diffusion tensor imaging), and resting-state functional connectivity (functional magnetic resonance imaging) were assessed before and after the expedition in the group of trekkers. Results: At baseline, the trekkers showed lower trait anxiety (p = 0.003) and conscientiousness (p = 0.03) than the control group. State anxiety was lower in the trekkers throughout the study (p < 0.001), and state anxiety and depression decreased at the end of the study in both groups (p = 0.043 and p = 0.007, respectively). Verbal fluency increased at the end of the study in both groups (p < 0.001), whereas verbal short-term memory and working memory performance did not change. No significant differences between before and after the expedition were found for neuroimaging measures. Conclusions: We argue that the observed differences in the neuropsychological measures mainly reflect aspecific familiarity and learning effects due to the repeated execution of the same questionnaires and task. The present results thus suggest that detrimental effects on neuropsychological and neuroimaging measures do not necessarily occur as a consequence of short-term exposure to altitude hypoxia up to 5,000 m, especially in the absence of altitude sickness.
Collapse
Affiliation(s)
- Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ginevra Di Matteo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Roberto Ruffini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Riccardo Navarra
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Verratti V, Bondi D, Mulliri G, Ghiani G, Crisafulli A, Pietrangelo T, Marinozzi ME, Cerretelli P. Muscle Oxygen Delivery in the Forearm and in the Vastus Lateralis Muscles in Response to Resistance Exercise: A Comparison Between Nepalese Porters and Italian Trekkers. Front Physiol 2020; 11:607616. [PMID: 33240112 PMCID: PMC7683416 DOI: 10.3389/fphys.2020.607616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
Altitude ascending represents an intriguing experimental model reproducing physiological and pathophysiological conditions sharing hypoxemia as the denominator. The aim of the present study was to investigate fractional oxygen extraction and blood dynamics in response to hypobaric hypoxia and to acute resistance exercises, taking into account several factors including different ethnic origin and muscle groups. As part of the “Kanchenjunga Exploration & Physiology” project, six Italian trekkers and six Nepalese porters took part in a high altitude trek in the Himalayas. The measurements were carried out at low (1,450 m) and high altitude (HA; 4,780 m). Near-infrared spectroscopy (NIRS)-derived parameters, i.e., Tot-Hb and tissue saturation index (TSI), were gathered at rest and after bouts of 3-min resistive exercise, both in the quadriceps and in the forearm muscles. TSI decreased with altitude, particularly in forearm muscles (from 66.9 to 57.3%), whereas the decrement was less in the quadriceps (from 62.5 to 57.2%); Nepalese porters were characterized by greater values in thigh TSI than Italian trekkers. Tot-Hb was increased after exercise. At altitude, such increase appeared to be higher in the quadriceps. This effect might be a consequence of the long-term adaptive memory due to the frequent exposures to altitude. Although speculative, we suggest a long-term adaptation of the Nepalese porters due to improved oxygenation of muscles frequently undergoing hypoxic exercise. Muscle structure, individual factors, and altitude exposure time should be taken into account to move on the knowledge of oxygen delivery and utilization at altitude.
Collapse
Affiliation(s)
- Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gabriele Mulliri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanna Ghiani
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Paolo Cerretelli
- Institute of Bioimaging and Molecular Physiology, National Research Council of Italy, Segrate, Italy
| |
Collapse
|
3
|
Verratti V, Ferrante C, Soranna D, Zambon A, Bhandari S, Orlando G, Brunetti L, Parati G. Effect of high-altitude trekking on blood pressure and on asymmetric dimethylarginine and isoprostane production: Results from a Mount Ararat expedition. J Clin Hypertens (Greenwich) 2020; 22:1494-1503. [PMID: 32762147 DOI: 10.1111/jch.13961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/30/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022]
Abstract
The study aimed at exploring the mechanisms behind blood pressure and heart rate changes upon acute altitude exposure utilizing urinary excretion of biochemical factors involved in cardiovascular regulation. The study was conducted on 12 lowlander native male mountain climbers, living at sea level, exposed to altitudes ranging from 1800 to 5147 m above sea level over 4 days, during their ascent to Mount Ararat (Turkey). Blood pressure (measured by oscillometric method), heart rate, and blood oxygen saturation (SpO2 ) were recorded at rest (on awakening before food intake), in hypoxic conditions at 4200 m and at sea level before and after the altitude expedition. In the same study conditions (ie before-during-after the expedition), first-voided urinary samples were collected and assayed for 8-iso-prostaglandin F2α (8-iso-PGF2α ) and asymmetric dimethylarginine (ADMA) determination. Heart rate, and systolic and diastolic blood pressures were higher (P < .05) at high altitude than at the sea level. Furthermore, both urinary 8-iso-PGF2α and ADMA were significantly elevated (P < .01) at high altitude and returned to normal levels soon after returning to sea level. A 4-day exposure to high-altitude hypoxia induced a temporary increase in blood pressure and heart rate, confirming previous findings. Blood pressure increase at high altitude was associated with significantly enhanced production of biochemical mediators such as 8-iso-PGF2α, catecholamines, and ADMA, although we could not demonstrate a direct link between these parallel significant changes probably due to the forcefully limited sample size of our study, carried out in challenging environmental conditions at very high altitude.
Collapse
Affiliation(s)
- Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Davide Soranna
- Department of Cardiovascular Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonella Zambon
- Department of statistic and quantitative method, University of Milano-Bicocca, Milan, Italy
| | - Suwas Bhandari
- Department of Critical Care and Internal Medicine, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giustino Orlando
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Luigi Brunetti
- Department of Pharmacy, "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Gianfranco Parati
- Department of Cardiovascular Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Physiological and pathological levels of prostaglandin E 2 in renal parenchyma and neoplastic renal tissue. Prostaglandins Other Lipid Mediat 2019; 141:11-13. [PMID: 30742910 DOI: 10.1016/j.prostaglandins.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
Abstract
Prostaglandin (PG)E2 seems to promote tumor proliferation by regulating cell growth, inhibiting apoptosis, promoting angiogenesis, and suppressing host immune surveillance of cancer cells. The suppression of prostaglandins biosynthesis is thought to be the main molecular mechanism for non-steroidal anti-inflammatory drugs antineoplastic effect. Yet the relationship between PGE2 and human renal cell carcinoma remains unclear. The aim of our study is to evaluate the PGE2 content in human renal parenchyma and Renal Cell Carcinoma. The study was conducted on 20 consecutive patients undergoing radical nephrectomy for Renal Cell Carcinoma. In the normal renal parenchyma and in the neoplastic renal tissue the PGE2 level was 83.43 ± 5.89 pg/mg and 289.67 ± 22.2 pg/mg, respectively (P < 0.0001). There was no relationship between PGE2 content and Renal Cell Carcinoma dimension, Fuhrman grade, pathological-Tumor-Node and Metastasis (pTNM) stage and histological subtype. The PGE2 over-content in neoplastic renal tissue suggests a role of PGE2 in development and progression of renal carcinoma.
Collapse
|
5
|
Bosco G, Paoli A, Rizzato A, Marcolin G, Guagnano MT, Doria C, Bhandari S, Pietrangelo T, Verratti V. Body Composition and Endocrine Adaptations to High-Altitude Trekking in the Himalayas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1211:61-68. [PMID: 31309516 DOI: 10.1007/5584_2019_414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long-term exposure to high altitude causes adaptive changes in several blood biochemical markers along with a marked body mass reduction involving both the lean and fat components. The aim of this study was to evaluate the impact of extended physical strain, due to extensive trekking at high altitude, on body composition, selected biomarkers in the blood, and the protective role of a high-protein diet in muscle dysfunction. We found that physical strain at high altitude caused a significant reduction in body mass and body fat, with a concomitant increase in the cross-sectional area of thigh muscles and an unchanged total lean body mass. Further, we found reductions in plasma leptin and homocysteine, while myoglobin, insulin, and C-reactive protein significantly increased. Creatine kinase, lactate dehydrogenase, and leptin normalized per body fat were unchanged. These findings demonstrate that high-altitude hypoxia, involving extended physical effort, has an impact on muscle function and body composition, facilitating sarcopenia and affecting body mass and fat distribution. It also activates pro-inflammatory metabolic pathways in response to muscular distress. These changes can be mitigated by a provision of a high-protein diet.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alex Rizzato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Teresa Guagnano
- Department of Medicine and Aging, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Christian Doria
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Suwas Bhandari
- Department of Critical Care and Internal Medicine, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological Sciences, Health and Territory "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
6
|
Verratti V, Bondi D, Jandova T, Camporesi E, Paoli A, Bosco G. Sex Hormones Response to Physical Hyperoxic and Hyperbaric Stress in Male Scuba Divers: A Pilot Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1176:53-62. [PMID: 31073929 DOI: 10.1007/5584_2019_384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of hyperbaric oxygen plays a significant role in many aspects of medicine. However, there are few studies that analyzed the role of hyperbaric oxygen, in addition to physical exercise, on the endocrine profile. The aim of this study was to compare changes in plasma male sex hormones after hyperbaric physical exercise with different hyperbaric oxygen pre-conditionings. We recruited six healthy, well-trained recreational male divers. Concentrations of prolactin (PRL), follicle-stimulating hormone (FSH), luteotrophic hormone (LH), cortisol, 17-β estradiol (E2), and total testosterone (TT) were measured in venous blood immediately after four different study conditions. Exercise increased PRL and hyperbaric oxygen potentiated this effect. Hyperbaria stimulated the E2 reduction and hyperoxia partially inhibited this reduction. Hyperbaria, but not hyperoxia, stimulated the TT reduction. There were no changes in FSH, LH, and cortisol. The increase in PRL likely reflects a stress response after physical exercise, amplified by hyperbaric oxygen. TT reduction may be interpreted as an acute and transient fertility impairment. Age, blood pressure, and BMI were taken into account as covariates for statistical analyses, and they significantly affected the results, in particular TT. These data open new insight into the role of E2 and PRL in male endocrine adaptive responses.
Collapse
Affiliation(s)
- Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Danilo Bondi
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tereza Jandova
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
7
|
Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol 2018; 56:2101-2122. [DOI: 10.1007/s12035-018-1212-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
|
8
|
Chen F, Lu J, Chen F, Lin Z, Lin Y, Yu L, Su X, Yao P, Cai B, Kang D. Recombinant neuroglobin ameliorates early brain injury after subarachnoid hemorrhage via inhibiting the activation of mitochondria apoptotic pathway. Neurochem Int 2018; 112:219-226. [DOI: 10.1016/j.neuint.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/17/2017] [Accepted: 07/29/2017] [Indexed: 01/17/2023]
|
9
|
Chen X, Liu Y, Zhang L, Zhu P, Zhu H, Yang Y, Guan P. Long-term neuroglobin expression of human astrocytes following brain trauma. Neurosci Lett 2015; 606:194-9. [PMID: 26362813 DOI: 10.1016/j.neulet.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/23/2015] [Accepted: 09/03/2015] [Indexed: 11/19/2022]
Abstract
Neuroglobin (Ngb), a 17 kDa monomeric protein, was initially described as a vertebrate oxygen-binding heme protein in 2000 and detected in metabolically active organs or cells, like the brain, peripheral nervous system as well as certain endocrine cells. A large array of initial experimental work reported that Ngb displayed a neuron restricted expression pattern in mammalian brains. However, growing evidence indicated astrocytes may also express Ngb under pathological conditions. To address the question whether human astrocytes express Ngb under traumatic insults, we investigated Ngb immuno-reactivity in post-mortem human brain tissues that died of acute, sub-acute and chronic brain trauma, respectively. We observed astrocytic Ngb expression in sub-acute and chronic traumatic brains rather than acute traumatic brains. Strikingly, the Ngb immuno-reactive astrocytes were still strongly detectable in groups that died 12 months after brain trauma. Our findings may imply an unexplored role of Ngb in astrocytes and the involved mechanisms were suggested to be further characterized. Also, therapeutic application of Ngb or Ngb-inducible chemical compounds in neuro-genesis or astrocytic scar forming can be expected.
Collapse
Affiliation(s)
- Xiameng Chen
- Department of Forensic Pathology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Yuan Liu
- Department of Forensic Pathology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Peng Zhu
- The People's Procuratorate of Chengdu, Sichuan, PR China
| | - Haibiao Zhu
- Department of Forensic Pathology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Yu Yang
- Department of Forensic Pathology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Peng Guan
- Department of Forensic Pathology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
10
|
Liu X, Gao Y, Yao H, Zhou L, Sun D, Wang J. Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol Trace Elem Res 2013; 155:439-46. [PMID: 24057451 DOI: 10.1007/s12011-013-9810-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022]
Abstract
Exposure to arsenic in drinking water results in a widespread environmental problem in the world, and the brain is a major target. Neuroglobin is a vertebrate heme protein regarded as playing neuroprotective role in hypoxia or oxidative stress. In this study, we investigated the toxic effects of sodium arsenite (NaAsO2) on primary cultured rat cerebellar granule neurons (CGNs) and detected neuroglobin (Ngb) expression in rat CGNs exposed to NaAsO2. Our results show that apoptosis was obviously induced by NaAsO2 treatment in rat CGNs by annexin V-fluorescein isothiocyanate assay. Intracellular reactive oxygen species generation increased significantly in the cells exposed to NaAsO2, and the apoptotic effects could be partially reversed by antioxidant N-acetyl-L-cysteine. Ngb protein and mRNA expression were significantly downregulated in rat CGNs shortly after NaAsO2 exposure and then upregulated after a longer time of exposure. Furthermore, mRNA expression changed more than protein expression and the toxic effect of NaAsO2 on Ngb expression is dose dependent. Higher Ngb expression was also detected in rat cerebellum, but not in other parts (cerebrum, hippocampus, and midbrain) of the brain exposed to NaAsO2 for 16 weeks. Taken together, cytotoxic effects of NaAsO2 on rat CGNs is induced at least partly by oxidative stress and Ngb may influence the course of arsenic toxicity in rat CGNs and rat cerebellum.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618104), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Di Giulio C, Zara S, Cataldi A, Porzionato A, Pokorski M, De Caro R. Human Carotid Body HIF and NGB Expression During Human Development and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:265-71. [DOI: 10.1007/978-94-007-4584-1_36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Shang A, Liu K, Wang H, Wang J, Hang X, Yang Y, Wang Z, Zhang C, Zhou D. Neuroprotective effects of neuroglobin after mechanical injury. Neurol Sci 2011; 33:551-8. [DOI: 10.1007/s10072-011-0772-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|
13
|
Dietz GPH. Protection by neuroglobin and cell-penetrating peptide-mediated delivery in vivo: a decade of research. Comment on Cai et al: TAT-mediated delivery of neuroglobin protects against focal cerebral ischemia in mice. Exp Neurol. 2011; 227(1): 224-31. Exp Neurol 2011; 231:1-10. [PMID: 21620833 DOI: 10.1016/j.expneurol.2011.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 12/09/2022]
Abstract
Over the last decade, numerous studies have suggested that neuroglobin is able to protect against the effects of ischemia. However, such results have mostly been based on models using transgenic overexpression or viral delivery. As a therapy, new technology would need to be applied to enable delivery of high concentrations of neuroglobin shortly after the patient suffers the stroke. An approach to deliver proteins in ischemia in vivo in a timely manner is the use of cell-penetrating peptides (CPP). CPP have been used in animal models for brain diseases for about a decade as well. In a recent issue of Experimental Neurology, Cai and colleagues test the effect of CPP-coupled neuroglobin in an in vivo stroke model. They find that the fusion protein protects the brain against the effect of ischemia when applied before stroke onset. Here, a concise review of neuroglobin research and the application of CPP peptides in hypoxia and ischemia is provided.
Collapse
Affiliation(s)
- Gunnar P H Dietz
- Dep. 851, Neurodegeneration II, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark.
| |
Collapse
|