1
|
Marullo AL, Lucking EF, Pender D, Dhaliwal P, O'Halloran KD. Three Days of Chronic Intermittent Hypoxia Induce β 1-Adrenoceptor Dependent Increases in Left Ventricular Contractility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:43-51. [PMID: 37322334 DOI: 10.1007/978-3-031-32371-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sleep apnea is characterized by bouts of chronic intermittent hypoxia (CIH) that elicit sympathetic hyperactivity resulting in residual hypertension. We previously demonstrated that exposure to CIH increases cardiac output and sought to determine if enhanced cardiac contractility manifests prior to hypertension.Male Wistar rats were exposed to cyclical bouts of hypoxia (FiO2 = 0.05 nadir; 90 s) and normoxia (FiO2 = 0.21; 210 s) 8 h/day for 3 days (CIH; n = 6). Control animals (n = 7) were exposed to room air. Data are presented as mean ± SD and were analyzed using unpaired Student t-tests.Three-day exposure to CIH did not elicit changes in heart rate and blood pressure (p > 0.05). However, baseline left ventricular contractility (dP/dtMAX) was significantly increased in CIH-exposed animals compared with control (15300 ± 2002 vs. 12320 ± 2725 mmHg/s; p = 0.025), despite no difference in catecholamine concentrations. Acute β1-adrenoceptor inhibition reduced contractility in CIH-exposed animals (-7604 ± 1298 vs. -4747 ± 2080 mmHg/s; p = 0.014), to levels equivalent to control, while preserving cardiovascular parameters. Sympathetic ganglion blockade (hexamethonium 25 mg/kg; i.v.) produced equivalent cardiovascular responses suggesting similar global sympathetic activity between groups. Interestingly, gene expression of the β1-adrenoceptor pathway in cardiac tissue was unchanged.Our results suggest that CIH increases cardiac contractility via β1-adrenoceptor dependent mechanisms prior to development of global sympathetic hyperactivity suggesting that positive cardiac inotropy contributes to the development of hypertension in CIH-exposed rats.
Collapse
Affiliation(s)
- Anthony L Marullo
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Daniel Pender
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Pardeep Dhaliwal
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Lang M, Mendt S, Paéz V, Gunga HC, Bilo G, Merati G, Parati G, Maggioni MA. Cardiac Autonomic Modulation and Response to Sub-Maximal Exercise in Chilean Hypertensive Miners. Front Physiol 2022; 13:846891. [PMID: 35492599 PMCID: PMC9043845 DOI: 10.3389/fphys.2022.846891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiac autonomic modulation in workers exposed to chronic intermittent hypoxia (CIH) has been poorly studied, especially considering hypertensive ones. Heart rate variability (HRV) has been proven as valuable tool to assess cardiac autonomic modulation under different conditions. The aim of this study is to investigate the cardiac autonomic response related to submaximal exercise (i.e., six-minute walk test, 6MWT) in hypertensive (HT, n = 9) and non-hypertensive (NT, n = 10) workers exposed for > 2 years to CIH. Participants worked on 7-on 7-off days shift between high altitude (HA: > 4.200 m asl) and sea level (SL: < 500 m asl). Data were recorded with electrocardiography (ECG) at morning upon awakening (10 min supine, baseline), then at rest before and after (5 min sitting, pre and post) the 6MWT, performed respectively on the first day of their work shift at HA, and after the second day of SL sojourn. Heart rate was higher at HA in both groups for each measurement (p < 0.01). Parasympathetic indices of HRV were lower in both groups at HA, either in time domain (RMSSD, p < 0.01) and in frequency domain (log HF, p < 0.01), independently from measurement's time. HRV indices in non-linear domain supported the decrease of vagal tone at HA and showed a reduced signal's complexity. ECG derived respiration frequency (EDR) was higher at HA in both groups (p < 0.01) with interaction group x altitude (p = 0.012), i.e., higher EDR in HT with respect to NT. No significant difference was found in 6MWT distance regarding altitude for both groups, whereas HT covered a shorter 6MWT distance compared to NT (p < 0.05), both at HA and SL. Besides, conventional arm-cuff blood pressure and oxygen blood saturation values (recorded before, at the end and after 5-min recovery from 6MWT), reported differences related to HA only. HA is the main factor affecting cardiac autonomic modulation, independently from hypertension. However, presence of hypertension was associated with a reduced physical performance independently from altitude, and with higher respiratory frequency at HA.
Collapse
Affiliation(s)
- Morin Lang
- Department of Rehabilitation Sciences and Human Movement, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
- Network for Extreme Environment Research (NEXER), University of Antofagasta, Antofagasta, Chile
| | - Stefan Mendt
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Valeria Paéz
- Department of Rehabilitation Sciences and Human Movement, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile
| | - Hanns-Christian, Gunga
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
| | - Grzegorz Bilo
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiology, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giampiero Merati
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Varese, Italy
- IRCCS Don C. Gnocchi Foundation, Milan, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiology, Istituto Auxologico Italiano, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Martina Anna Maggioni
- Charité—Universitätsmedizin Berlin, Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Berlin, Germany
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Sunderram J, Semmlow J, Patel P, Rao H, Chun G, Agarwala P, Bhaumik M, Le-Hoang O, Lu SE, Neubauer JA. Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic intermittent hypoxia in mice. J Appl Physiol (1985) 2016; 121:944-952. [PMID: 27609199 DOI: 10.1152/japplphysiol.00036.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/06/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) increases sympathetic tone and respiratory instability. Our previous work showed that chronic hypoxia induces the oxygen-sensing enzyme heme oxygenase-1 (HO-1) within the C1 sympathoexcitatory region and the pre-Bötzinger complex (pre-BötC). We therefore examined the effect of CIH on time course of induced expression of HO-1 within these regions and determined whether the induction of HO-1 correlated with changes in respiratory, sigh frequency, and sympathetic responses (spectral analysis of heart rate) to acute hypoxia (10% O2) during 10 days of exposure to CIH in chronically instrumented awake wild-type (WT) and HO-1 null mice (HO-1-/-). HO-1 was induced within the C1 and pre-BötC regions after 1 day of CIH. There were no significant differences in the baseline respiratory parameters between WT and HO-1-/- Prior to CIH, acute hypoxia increased respiratory frequency in both WT and HO-1-/-; however, minute diaphragm electromyogram activity increased in WT but not HO-1-/- The hypoxic respiratory response after 1 and 10 days of CIH was restored in HO-1-/- CIH resulted in an initial significant decline in 1) the hypoxic sigh frequency response, which was restored in WT but not HO-1-/-, and 2) the baseline sympathetic activity in WT and HO-1-/-, which remained stable subsequently in WT but not in HO-1-/- We conclude that 1) CIH induces expression of HO-1 in the C1 and pre-BötC regions within 1 day and 2) HO-1 is necessary for hypoxia respiratory response and contributes to the maintenance of the hypoxic sigh responses and baseline sympathetic activity during CIH.
Collapse
Affiliation(s)
- Jag Sunderram
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey;
| | - John Semmlow
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Pranav Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Harshit Rao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Glen Chun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Priya Agarwala
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Mantu Bhaumik
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey; and
| | - Oanh Le-Hoang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Shou-En Lu
- Department of Biostatistics, Rutgers School of Public Health, Piscataway, New Jersey
| | - Judith A Neubauer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
4
|
Perim RR, Bonagamba LGH, Machado BH. Cardiovascular and respiratory outcome of preconditioned rats submitted to chronic intermittent hypoxia. Exp Physiol 2016. [PMID: 26195236 DOI: 10.1113/ep085237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the effects of hypoxic preconditioning upon the cardiovascular and respiratory responses to subsequent episodes of chronic intermittent hypoxia? What is the main finding and its importance? The cardiovascular and respiratory responses to a chronic intermittent hypoxia protocol were not altered by previous exposure to intermittent or sustained hypoxia. These findings show that preconditioning to hypoxia produced neither facilitation nor protection from the cardiovascular and respiratory dysfunctions in response to subsequent episodes of chronic intermittent hypoxia in juvenile rats. Rats exposed to chronic intermittent hypoxia (CIH) develop hypertension, which is associated with changes in the coupling of sympathetic and respiratory activities. In this study, we hypothesized that previous preconditioning to intermittent or sustained hypoxia would affect cardiovascular and respiratory changes produced by subsequent protocols of CIH. To test this hypothesis, male Wistar rats were preconditioned to either 10 days of CIH or 24 h of sustained hypoxia (SH). After the initial exposure to hypoxia, rats were maintained in normoxic conditions for 15 days before a new protocol of CIH during 10 days. Cardiovascular and respiratory variables obtained from groups of preconditioned rats were compared with a group of rats exposed to CIH for the first time and also to a group of rats maintained in normoxic conditions throughout the period of time of the respective preconditioning protocol. The data show that CIH produced a similar increase in arterial pressure and heart rate in both CIH and SH preconditioning protocols. Respiratory parameters during basal conditions were also not affected by preconditioning to either CIH or SH. We conclude that previous exposure to CIH or SH preconditioning does not facilitate or prevent the cardiovascular changes produced by CIH.
Collapse
Affiliation(s)
- Raphael R Perim
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
5
|
Serebrovskaya TV, Xi L. Intermittent hypoxia in childhood: the harmful consequences versus potential benefits of therapeutic uses. Front Pediatr 2015; 3:44. [PMID: 26042211 PMCID: PMC4436817 DOI: 10.3389/fped.2015.00044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/07/2015] [Indexed: 12/04/2022] Open
Abstract
Intermittent hypoxia (IH) often occurs in early infancy in both preterm and term infants and especially at 36-44 weeks postmenstrual age. These episodes of IH could result from sleep-disordered breathing or may be temporally unrelated to apnea or bradycardia events. There are numerous reports indicating adverse effects of IH on development, behavior, academic achievement, and cognition in children with sleep apnea syndrome. It remains uncertain about the exact causative relationship between the neurocognitive and behavioral morbidities and IH and/or its associated sleep fragmentation. On the other hand, well-controlled and moderate IH conditioning/training has been used in sick children for treating their various forms of bronchial asthma, allergic dermatoses, autoimmune thyroiditis, cerebral palsy, and obesity. This review article provides an updated and impartial analysis on the currently available evidence in supporting either side of the seemingly contradictory scenarios. We wish to stimulate a comprehensive understanding of such a complex physiological phenomenon as intermittent hypoxia, which may be accompanied by other confounding factors (e.g., hypercapnia, polycythemia), in order to prevent or reduce its harmful consequences, while maximizing its potential utility as an effective therapeutic tool in pediatric patients.
Collapse
Affiliation(s)
| | - Lei Xi
- Department of Internal Medicine, Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
6
|
Dick TE, Mims JR, Hsieh YH, Morris KF, Wehrwein EA. Increased cardio-respiratory coupling evoked by slow deep breathing can persist in normal humans. Respir Physiol Neurobiol 2014; 204:99-111. [PMID: 25266396 DOI: 10.1016/j.resp.2014.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Slow deep breathing (SDB) has a therapeutic effect on autonomic tone. Our previous studies suggested that coupling of the cardiovascular to the respiratory system mediates plasticity expressed in sympathetic nerve activity. We hypothesized that SDB evokes short-term plasticity of cardiorespiratory coupling (CRC). We analyzed respiratory frequency (fR), heart rate and its variability (HR&HRV), the power spectral density (PSD) of blood pressure (BP) and the ventilatory pattern before, during, and after a 20-min epoch of SDB. During SDB, CRC and the relative PSD of BP at fR increased; mean arterial pressure decreased; but HR varied; increasing (n = 3), or decreasing (n = 2) or remaining the same (n = 5). After SDB, short-term plasticity was not apparent for the group but for individuals differences existed between baseline and recovery periods. We conclude that a repeated practice, like pranayama, may strengthen CRC and evoke short-term plasticity effectively in a subset of individuals.
Collapse
Affiliation(s)
- Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States.
| | - Joseph R Mims
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Erica A Wehrwein
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Yang SQ, Han LL, Dong XL, Wang CY, Xia H, Liu P, Wang JH, He PP, Liu SN, Li MX. Mal-effects of obstructive sleep apnea on the heart. Sleep Breath 2011; 16:717-22. [PMID: 21928076 DOI: 10.1007/s11325-011-0566-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/21/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aims to examine the impact of chronic intermittent hypoxia on hearts in patients with obstructive sleep apnea (OSA). METHODS Two hundred twenty patients were divided into groups based on (1) severity of the disease, (2) years of disease history, and (3) with or without secondary hypertension. All subjects underwent blood pressure measurements, polysomnogram monitoring, and cardiac Doppler ultrasound examinations. RESULTS The left ventricular ejection fraction (LVEF), fractional shortening (FS), and the ratio of early to late diastolic filling (E/A) in patients with severe OSA were lower than in those with moderate OSA and in healthy controls. The inner diameters of the main pulmonary artery (inD of MPA), the inner diameters of the right cardiac ventricle (inD of RV), and the thickness of anterior wall of the right ventricle (TAW of RV) were increased in patients with severe OSA compared to those with moderate disease and worsened as a function of time with disease. The tissue Doppler imaging-derived Tei index and pulmonary artery systolic pressure were also increased along with the severity of OSA. LVEF and FS in patients who had suffered from OSA for >10 years were decreased compared with those suffering from OSA for a shorter time. LVEF and FS in patients with secondary hypertension were decreased significantly relative to non-hypertensive OSA patients and healthy controls. E/A was decreased in OSA patients whether they had secondary hypertension or not. CONCLUSION OSA affected the left ventricular diastolic function in the early stage of the disease. Extended exposure to OSA resulted in left ventricular dysfunction with increased hypertension. Right ventricle dysfunction and abnormalities became more severe as the disease progressed.
Collapse
Affiliation(s)
- Song-qing Yang
- Department of Electrodiagnostics, First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Skelly JR, Edge D, Shortt CM, Jones JFX, Bradford A, O'Halloran KD. Tempol ameliorates pharyngeal dilator muscle dysfunction in a rodent model of chronic intermittent hypoxia. Am J Respir Cell Mol Biol 2011; 46:139-48. [PMID: 21868712 DOI: 10.1165/rcmb.2011-0084oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory muscle dysfunction is implicated in the pathophysiology of obstructive sleep apnea syndrome (OSAS), an oxidative stress disorder prevalent in men. Pharmacotherapy for OSAS is an attractive option, and antioxidant treatments may prove beneficial. We examined the effects of chronic intermittent hypoxia (CIH) on breathing and pharyngeal dilator muscle structure and function in male and female rats. Additionally, we tested the efficacy of antioxidant treatment in preventing (chronic administration) or reversing (acute administration) CIH-induced effects in male rats. Adult male and female Wistar rats were exposed to alternating cycles of normoxia and hypoxia (90 s each; Fi(O(2)) = 5% O(2) at nadir; Sa(O(2)) ∼ 80%) or sham treatment for 8 h/d for 9 days. Tempol (1 mM, superoxide dismutase mimetic) was administered to subgroups of sham- and CIH-treated animals. Breathing was assessed by whole-body plethysmography. Sternohyoid muscle contractile and endurance properties were examined in vitro. Muscle fiber type and cross-sectional area and the activity of key metabolic enzymes were determined. CIH decreased sternohyoid muscle force in male rats only. This was not attributable to fiber transitions or alterations in oxidative or glycolytic enzyme activity. Muscle weakness after CIH was prevented by chronic Tempol supplementation and was reversed by acute antioxidant treatment in vitro. CIH increased normoxic ventilation in male rats only. Sex differences exist in the effects of CIH on the respiratory system, which may contribute to the higher prevalence of OSAS in male subjects. Antioxidant treatment may be beneficial as an adjunct OSAS therapy.
Collapse
Affiliation(s)
- J Richard Skelly
- Department of Physiology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
Iturriaga R, Moya EA, Del Rio R. Carotid body potentiation induced by intermittent hypoxia: Implications for cardiorespiratory changes induced by sleep apnoea. Clin Exp Pharmacol Physiol 2009; 36:1197-204. [DOI: 10.1111/j.1440-1681.2009.05213.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|