1
|
Zhang X, Xu D, Han W, Wang Y, Fan X, Loladze I, Gao G, Zhang Y, Tong S, Ye N. Elevated CO 2 affects kelp nutrient quality: A case study of Saccharina japonica from CO 2 -enriched coastal mesocosm systems. JOURNAL OF PHYCOLOGY 2021; 57:379-391. [PMID: 33150587 DOI: 10.1111/jpy.13097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Kelps provide critical services for coastal food chains and ecosystem, and they are important food source for some segments of human population. Despite their ecological importance, little is known about long-term impacts of elevated CO2 (eCO2 ) on nutrient metabolites in kelps and the underlying regulation mechanisms. In this study, the kelp Saccharina japonica was cultured in CO2 -enriched coastal mesocosm systems for up to 3 months. We found that, although eCO2 significantly increased the growth rate, carbon concentrations, and C/N ratio of S. japonica, and it had no effect on total nitrogen and protein contents at the end of cultivation period. Meanwhile, it decreased the lipid, magnesium, sodium, and calcium content and changed the amino acid and fatty acid composition. Combining the genome-wide transcriptomic and metabolic evidence, we obtained a system-level understanding of metabolic response of S. japonica to eCO2 . The unique ornithine-urea cycle (OUC) and aspartate-argininosuccinate shunt (AAS), coupled with TCA cycle, balanced the carbon and nitrogen metabolism under eCO2 by providing carbon skeleton for amino acid synthesis and reduced power for nitrogen assimilation. This research provides a major advance in the understanding of kelp nutrient metabolic mechanism in the context of global climate change, and such CO2 -induced shifts in nutritional value may induce changes in the structure and stability of marine trophic webs and affect the quality of human nutrition resources.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Dong Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Wentao Han
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yitao Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Xiao Fan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Irakli Loladze
- Bryan College of Health Sciences, Bryan Medical Center, Lincoln, NE, 68506, USA
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
- Jiangsu Key Laboratory for Marine Bioresources and Environment, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Yan Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Shanying Tong
- School of Life Science, Ludong University, Yantai, 264025, China
| | - Naihao Ye
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|